Cheng-Xia Miao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2610444/publications.pdf

Version: 2024-02-01

201674 182427 2,733 63 27 51 citations h-index g-index papers 78 78 78 2745 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Lewis Basic Ionic Liquids atalyzed Conversion of Carbon Dioxide to Cyclic Carbonates. Advanced Synthesis and Catalysis, 2010, 352, 2233-2240.	4.3	252
2	Bifunctional Metalâ€Salen Complexes as Efficient Catalysts for the Fixation of CO ₂ with Epoxides under Solventâ€Free Conditions. ChemSusChem, 2008, 1, 236-241.	6.8	180
3	Efficient synthesis of dimethyl carbonate from methanol, propylene oxide and CO2catalyzed by recyclable inorganic base/phosphonium halide-functionalized polyethylene glycol. Green Chemistry, 2007, 9, 566-571.	9.0	127
4	Efficient Benzylic and Aliphatic C–H Oxidation with Selectivity for Methylenic Sites Catalyzed by a Bioinspired Manganese Complex. Organic Letters, 2014, 16, 1108-1111.	4.6	127
5	Proton-Promoted and Anion-Enhanced Epoxidation of Olefins by Hydrogen Peroxide in the Presence of Nonheme Manganese Catalysts. Journal of the American Chemical Society, 2016, 138, 936-943.	13.7	114
6	Chiral Bioinspired Nonâ€Heme Iron Complexes for Enantioselective Epoxidation of α,βâ€Unsaturated Ketones. Advanced Synthesis and Catalysis, 2011, 353, 3014-3022.	4.3	110
7	TEMPO and Carboxylic Acid Functionalized Imidazolium Salts/Sodium Nitrite: An Efficient, Reusable, Transition Metalâ€Free Catalytic System for Aerobic Oxidation of Alcohols. Advanced Synthesis and Catalysis, 2009, 351, 2209-2216.	4.3	103
8	Chemical fixation of CO2: efficient synthesis of quinazoline-2,4(1H, 3H)-diones catalyzed by guanidines under solvent-free conditions. Tetrahedron, 2010, 66, 4063-4067.	1.9	100
9	Synthesis of bimagnetic ionic liquid and application for selective aerobic oxidation of aromatic alcohols under mild conditions. Chemical Communications, 2011, 47, 2697.	4.1	100
10	Manganese Catalysts with <i>C</i> ₁ â€Symmetric N ₄ Ligand for Enantioselective Epoxidation of Olefins. Chemistry - A European Journal, 2012, 18, 6750-6753.	3.3	95
11	NHPI and ferric nitrate: a mild and selective system for aerobic oxidation of benzylic methylenes. Catalysis Science and Technology, 2016, 6, 1378-1383.	4.1	78
12	Asymmetric 5-endo chloroetherification of homoallylic alcohols toward the synthesis of chiral \hat{l}^2 -chlorotetrahydrofurans. Chemical Communications, 2013, 49, 2418.	4.1	75
13	Highly Enantioselective Oxidation of Spirocyclic Hydrocarbons by Bioinspired Manganese Catalysts and Hydrogen Peroxide. ACS Catalysis, 2018, 8, 2479-2487.	11.2	75
14	Mechanistic Insights into the Enantioselective Epoxidation of Olefins by Bioinspired Manganese Complexes: Role of Carboxylic Acid and Nature of Active Oxidant. ACS Catalysis, 2018, 8, 4528-4538.	11.2	72
15	Self-Neutralizing in Situ Acidic CO ₂ /H ₂ O System for Aerobic Oxidation of Alcohols Catalyzed by TEMPO Functionalized Imidazolium Salt/NaNO ₂ . Journal of Organic Chemistry, 2010, 75, 257-260.	3.2	69
16	Highly Efficient Oxidation of Secondary Alcohols to Ketones Catalyzed by Manganese Complexes of N ₄ Ligands with H ₂ O ₂ . Organic Letters, 2015, 17, 54-57.	4.6	67
17	Enantioselective Epoxidation of Olefins with H ₂ O ₂ Catalyzed by Bioinspired Aminopyridine Manganese Complexes. Organic Letters, 2016, 18, 372-375.	4.6	63
18	Ethylene carbonate as a unique solvent for palladium-catalyzed Wacker oxidation using oxygen as the sole oxidant. Green Chemistry, 2009, 11, 1317.	9.0	61

#	Article	IF	Citations
19	Carbon Dioxide in Heterocyclic Synthesis. Current Organic Chemistry, 2011, 15, 621-646.	1.6	61
20	Bioinspired Manganese and Iron Complexes with Tetradentate N Ligands for the Asymmetric Epoxidation of Olefins. ChemCatChem, 2013, 5, 2489-2494.	3.7	59
21	Tert-butyl nitrite: a metal-free radical initiator for aerobic cleavage of benzylic C bonds in compressed carbon dioxide. Green Chemistry, 2011, 13, 541.	9.0	53
22	Manganese complex-catalyzed oxidation and oxidative kinetic resolution of secondary alcohols by hydrogen peroxide. Chemical Science, 2017, 8, 7476-7482.	7.4	49
23	Magnetic Nanoparticles of Ferrite Complex Oxides: A Cheap, Efficient, Recyclable Catalyst for Building the CïŁ¿N Bond under Ligandâ€Free Conditions. ChemCatChem, 2012, 4, 824-830.	3.7	43
24	A Mononuclear Manganese Complex of a Tetradentate Nitrogen Ligand $\hat{a} \in \text{``Synthesis'}$, Characterizations, and Application in the Asymmetric Epoxidation of Olefins. European Journal of Inorganic Chemistry, 2014, 5777-5782.	2.0	34
25	N-Bromosuccinimide as an oxidant for the transition-metal-free synthesis of 2-aminobenzoxazoles from benzoxazoles and secondary amines. Organic and Biomolecular Chemistry, 2014, 12, 3108.	2.8	31
26	Biarylâ€Bridged Salalen Ligands and Their Application in Titaniumâ€Catalyzed Asymmetric Epoxidation of Olefins with Aqueous H ₂ O ₂ . European Journal of Organic Chemistry, 2011, 2011, 4289-4292.	2.4	29
27	A Salen–Co ³⁺ Catalyst for the Hydration of Terminal Alkynes and in Tandem Catalysis with Ru–TsDPEN for the Oneâ€Pot Transformation of Alkynes into Chiral Alcohols. ChemCatChem, 2014, 6, 1612-1616.	3.7	29
28	Merging the ring opening of benzoxazoles with secondary amines and an iron-catalyzed oxidative cyclization towards the environmentally friendly synthesis of 2-aminobenzoxazoles. Green Chemistry, 2013, 15, 2975.	9.0	28
29	Facile and highly chemoselective synthesis of benzil derivatives via oxidation of stilbenes in an I2–H2O system. RSC Advances, 2013, 3, 9666.	3.6	27
30	Bioinspired Manganese Complexes and Graphene Oxide Synergistically Catalyzed Asymmetric Epoxidation of Olefins with Aqueous Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2017, 359, 476-484.	4.3	27
31	Non-heme manganese complexes of C1-symmetric N4 ligands: Synthesis, characterization and asymmetric epoxidations of \hat{l}_{\pm}, \hat{l}^2 -enones. Journal of Organometallic Chemistry, 2012, 715, 9-12.	1.8	25
32	TEMPO and its derivatives mediated reactions under transition-metal-free conditions. Chinese Chemical Letters, 2020, 31, 39-48.	9.0	25
33	Polyethylene glycol radical-initiated oxidation of benzylic alcohols in compressed carbon dioxide. Green Chemistry, 2009, 11, 1013.	9.0	24
34	Aerobic oxidation of secondary alcohols using NHPI and iron salt as catalysts at room temperature. Journal of Molecular Catalysis A, 2014, 393, 62-67.	4.8	22
35	Synergistic Acid-Catalyzed Synthesis of <i>N</i> -Aryl-Substituted Azacycles from Anilines and Cyclic Ethers. Organic Letters, 2016, 18, 1522-1525.	4.6	22
36	The Freeâ€Radical Chemistry of Polyethylene Glycol: Organic Reactions in Compressed Carbon Dioxide. ChemSusChem, 2009, 2, 755-760.	6.8	21

#	Article	IF	Citations
37	MnII complexes with tetradentate N4 ligands: Highly efficient catalysts for the epoxidation of olefins with H2O2. Journal of Molecular Catalysis A, 2012, 353-354, 185-191.	4.8	21
38	A Cu(<scp>i</scp>)–I coordination polymer fluorescent chemosensor with amino-rich sites for nitro aromatic compound (NAC) detection in water. CrystEngComm, 2020, 22, 5690-5697.	2.6	19
39	Efficient Catalysts In situ Generated from Zinc, Amide and Benzyl Bromide for Epoxide/CO ₂ Coupling Reaction at Atmospheric Pressure. European Journal of Organic Chemistry, 2019, 2019, 1311-1316.	2.4	17
40	Efficient Thiolation of Alcohols Catalyzed by Long Chained Acidâ€Functionalized Ionic Liquids under Mild Conditions. European Journal of Organic Chemistry, 2019, 2019, 3012-3021.	2.4	16
41	The Direct Arylation of Unactivated Arenes with Aryl Halides Catalyzed by a Magnetically Recyclable Feâ€Ni Alloy. ChemCatChem, 2012, 4, 192-195.	3.7	15
42	Tetraethylammonium iodide catalyzed synthesis of diaryl ketones via the merger of cleavage of C–C double bonds and recombination of aromatic groups. RSC Advances, 2014, 4, 46494-46497.	3.6	15
43	Magnetic Fe–Ni Alloy Catalyzed Suzuki Crossâ€Coupling Reactions of Aryl Halides with Phenylboronic Acid. ChemCatChem, 2013, 5, 142-145.	3.7	14
44	Hydration of terminal alkynes catalyzed by a water-soluble salen-Co(III) complex. Chinese Journal of Catalysis, 2014, 35, 1695-1700.	14.0	14
45	Bu ₄ NHSO ₄ â€Catalyzed Direct <i>N</i> âêAllylation of Pyrazole and its Derivatives with Allylic Alcohols in Water: A Metalâ€Free, Recyclable and Sustainable System. Advanced Synthesis and Catalysis, 2021, 363, 5461-5472.	4.3	14
46	4â€CH ₃ CONH–TEMPO/Peracetic Acid System for a Shortened Electronâ€Transferâ€Cycleâ€Controlled Oxidation of Secondary Alcohols. ChemCatChem, 2015, 7, 1865-1870.	3.7	12
47	Direct synthesis of cyclic carbonates from olefins and CO2: Single- or multi-component catalytic systems via epoxide or halohydrin intermediate. Journal of CO2 Utilization, 2021, 53, 101742.	6.8	11
48	Methodologies for chemical utilization of CO2 to valuable compounds through molecular activation by efficient catalysts. Frontiers of Chemical Engineering in China, 2009, 3, 224-228.	0.6	9
49	Effect of Ligand Topology on the Reactivity of Chiral Tetradentate Aminopyridine Manganese Complexes. ACS Catalysis, 2020, 10, 11857-11863.	11.2	9
50	Enantioselective cyanation of aldehydes catalyzed by bifunctional salen–aluminum complex. Catalysis Communications, 2012, 27, 138-140.	3.3	8
51	Long-Chained Acidic Ionic Liquids-Catalyzed Cyclization of 2-Substituted Aminoaromatics with \hat{I}^2 -Diketones: A Metal-Free Strategy to Construct Benzoazoles. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	8
52	A CO ₂ -induced ROCO ₂ Na/ROCO ₂ H buffer solution promoted the carboxylative cyclization of propargyl alcohol to synthesize cyclic carbonates. Catalysis Science and Technology, 2020, 10, 736-741.	4.1	8
53	Application of Sulfuryl Chloride for the Quick Construction of \hat{I}^2 -Chlorotetrahydrofuran Derivatives from Homoallylic Alcohols under Mild Conditions. Synthesis, 2013, 45, 2391-2396.	2.3	7
54	Cul/N4 ligand/TEMPO derivatives: A mild and highly efficient system for aerobic oxidation of primary alcohols. Chinese Journal of Catalysis, 2014, 35, 1864-1870.	14.0	7

#	Article	IF	Citations
55	lonic Liquids with Multiâ€Active Sites Synergistically Catalyzed Metalâ€Free Transformation of Alcohols Using Dimethyl Carbonate as an Environmental Solvent. European Journal of Organic Chemistry, 2021, 2021, 3819-3826.	2.4	7
56	Theoretical investigation on transformation of Cr(II) to Cr(V) complexes bearing tetraâ€Nâ€heterocyclic carbene and group transfer reactivity. International Journal of Quantum Chemistry, 2020, 120, e26340.	2.0	6
57	Theoretical investigation on the mechanism and enantioselectivity of organocatalytic asymmetric Povarov reactions of anilines and aldehydes. International Journal of Quantum Chemistry, 2021, 121, e26574.	2.0	5
58	A novel manganese(III)-peroxo complex bearing a proline-derived pentadentate aminobenzimidazole ligand. Chinese Chemical Letters, 2018, 29, 1869-1871.	9.0	4
59	Acidic Ionic Liquids as Metal-Free and Recyclable Catalysts for Direct Reduction of Aromatic Allylic Alcohol in Dimethyl Carbonate via Hydrogen Transfer. ACS Sustainable Chemistry and Engineering, 2022, 10, 6784-6793.	6.7	4
60	Efficient removal of Pb2+ and Cd2+ using a Cu(i)â€"Br coordination polymer constructed with an amino-rich ligand. CrystEngComm, 2021, 23, 1489-1496.	2.6	3
61	Direct deoxygenation of active allylic alcohols <i>via</i> metal-free catalysis. Organic and Biomolecular Chemistry, 2022, 20, 1680-1689.	2.8	3
62	Inside Cover: Magnetic Nanoparticles of Ferrite Complex Oxides: A Cheap, Efficient, Recyclable Catalyst for Building the Ci£¿N Bond under Ligand-Free Conditions (ChemCatChem 6/2012). ChemCatChem, 2012, 4, 710-710.	3.7	0
63	Theoretical investigation of the mechanism of DMAP-promoted $[4+2]$ -annulation of prop-2-ynylsulfonium with isatoic anhydride. Canadian Journal of Chemistry, 0 , , 1 -9.	1.1	O