Hans Marx

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2610436/publications.pdf

Version: 2024-02-01

361413 501196 1,473 29 20 28 h-index citations g-index papers 31 31 31 1799 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	<i>Pichia pastoris</i> : protein production host and model organism for biomedical research. Future Microbiology, 2013, 8, 191-208.	2.0	198
2	1,3-Propanediol production from glycerol with Lactobacillus diolivorans. Bioresource Technology, 2012, 119, 133-140.	9.6	115
3	The Efficient Clade: Lactic Acid Bacteria for Industrial Chemical Production. Trends in Biotechnology, 2017, 35, 756-769.	9.3	106
4	GoldenPiCS: a Golden Gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris. BMC Systems Biology, 2017, 11, 123.	3.0	105
5	Directed gene copy number amplification in <i> Pichia pastoris < /i > by vector integration into the ribosomal DNA locus. FEMS Yeast Research, 2009, 9, 1260-1270.</i>	2.3	104
6	An efficient tool for metabolic pathway construction and gene integration for Aspergillus niger. Bioresource Technology, 2017, 245, 1327-1333.	9.6	93
7	Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris. Microbial Cell Factories, 2008, 7, 23.	4.0	81
8	Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1,3-propanediol by Lactobacillus diolivorans. Bioresource Technology, 2014, 152, 499-504.	9.6	73
9	Metabolic Flexibility of Yarrowia lipolytica Growing on Glycerol. Frontiers in Microbiology, 2017, 8, 49.	3.5	70
10	Six novel constitutive promoters for metabolic engineering of Aspergillus niger. Applied Microbiology and Biotechnology, 2013, 97, 259-267.	3.6	60
11	Engineering of bottlenecks in Rhizopus oryzae lipase production in Pichia pastoris using the nitrogen source-regulated FLD1 promoter. New Biotechnology, 2009, 25, 396-403.	4.4	46
12	Genome Sequence of the Ruminal Bacterium Megasphaera elsdenii. Journal of Bacteriology, 2011, 193, 5578-5579.	2.2	44
13	LC-MS/MS-based analysis of coenzyme A and short-chain acyl-coenzyme A thioesters. Analytical and Bioanalytical Chemistry, 2015, 407, 6681-6688.	3.7	39
14	Cloning, disruption and protein secretory phenotype of the GAS1 homologue of Pichia pastoris. FEMS Microbiology Letters, 2006, 264, 40-47.	1.8	35
15	Microbial Production of 1,3-Propanediol. Recent Patents on Biotechnology, 2008, 2, 191-197.	0.8	33
16	Organic acids from lignocellulose: <i>Candida lignohabitans</i> as a new microbial cell factory. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 681-691.	3.0	33
17	Golden Gate-based metabolic engineering strategy for wild-type strains of <i>Yarrowia lipolytica</i> FEMS Microbiology Letters, 2019, 366, .	1.8	33
18	The metabolic growth limitations of petite cells lacking the mitochondrial genome. Nature Metabolism, 2021, 3, 1521-1535.	11.9	29

#	Article	IF	Citations
19	Microbial 2-butanol production with Lactobacillus diolivorans. Biotechnology for Biofuels, 2019, 12, 262.	6.2	28
20	Effect of carbon pulsing on the redox household of Lactobacillus diolivorans in order to enhance 1,3-propanediol production. New Biotechnology, 2017, 34, 32-39.	4.4	26
21	3-Hydroxypropionaldehyde production from crude glycerol by Lactobacillus diolivorans with enhanced glycerol uptake. Biotechnology for Biofuels, 2017, 10, 295.	6.2	25
22	Identification of Oxygen-Responsive Transcripts in the Silage Inoculant Lactobacillus buchneri CD034 by RNA Sequencing. PLoS ONE, 2015, 10, e0134149.	2.5	19
23	From rumen to industry. Microbial Cell Factories, 2012, 11, 121.	4.0	17
24	Genetic engineering of <i>Lactobacillus diolivorans </i> . FEMS Microbiology Letters, 2013, 344, 152-158.	1.8	17
25	Insights into the glycerol transport of <i>Yarrowia lipolytica</i> . Yeast, 2022, 39, 323-336.	1.7	13
26	Complete genome sequence and transcriptome regulation of the pentose utilizing yeast <i>Sugiyamaella lignohabitans</i> FEMS Yeast Research, 2016, 16, fow037.	2.3	11
27	Identification of the citrate exporter Cex1 of <i>Yarrowia lipolytica</i> . FEMS Yeast Research, 2020, 20,	2.3	9
28	Slow Growth and Increased Spontaneous Mutation Frequency in Respiratory Deficient afo1-Yeast Suppressed by a Dominant Mutation in ATP3. G3: Genes, Genomes, Genetics, 2020, 10, 4637-4648.	1.8	7
29	Synthetic Biology Assisting Metabolic Pathway Engineering. , 2016, , 255-280.		2