List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2610110/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cysteine is a limiting factor for glioma proliferation and survival. Molecular Oncology, 2022, 16, 1777-1794.	2.1	7
2	Comparison of Proteomic Expression Profiles after Radiation Exposure across Four Different Species. Radiation Research, 2022, 197, .	0.7	3
3	MPAPASS software enables stitched multiplex, multidimensional EV repertoire analysis and a standard framework for reporting bead-based assays. Cell Reports Methods, 2022, 2, 100136.	1.4	8
4	CX-5461 induces radiosensitization through modification of the DNA damage response and not inhibition of RNA polymerase I. Scientific Reports, 2022, 12, 4059.	1.6	2
5	Pilot trial of topical MTS‑01 application to reduce dermatitis in patients receiving chemoradiotherapy for stageÂl‑III carcinoma of the anal canal. International Journal of Oncology, 2022, 60, .	1.4	2
6	Analytical Considerations of Large-Scale Aptamer-Based Datasets for Translational Applications. Cancers, 2022, 14, 2227.	1.7	3
7	Inhibition of the Translation Initiation Factor eIF4A Enhances Tumor Cell Radiosensitivity. Molecular Cancer Therapeutics, 2022, 21, 1406-1414.	1.9	1
8	Lessons to Learn From a Successful Virtual Mock Oral Examination Pilot Experience. Advances in Radiation Oncology, 2021, 6, 100534.	0.6	7
9	miR-21 Plays a Dual Role in Tumor Formation and Cytotoxic Response in Breast Tumors. Cancers, 2021, 13, 888.	1.7	20
10	Avelumab, a PD-L1 Inhibitor, in Combination with Hypofractionated Radiotherapy and the Abscopal Effect in Relapsed Refractory Multiple Myeloma. Oncologist, 2021, 26, 288-e541.	1.9	10
11	Novel Murine Biomarkers of Radiation Exposure Using An Aptamer-Based Proteomic Technology. Frontiers in Pharmacology, 2021, 12, 633131.	1.6	9
12	The Radiosensitizing Effect of AZD0530 in Glioblastoma and Glioblastoma Stem-Like Cells. Molecular Cancer Therapeutics, 2021, 20, 1672-1679.	1.9	6
13	Caloric Restriction Impairs Regulatory T cells Within the Tumor Microenvironment After Radiation and Primes Effector T cells. International Journal of Radiation Oncology Biology Physics, 2021, 110, 1341-1349.	0.4	19
14	Report of Canonical <i>BCR</i> - <i>ABL1</i> Fusion in Glioblastoma. JCO Precision Oncology, 2021, 5, 1348-1353.	1.5	3
15	Bench to bedside radiosensitizer development strategy for newly diagnosed glioblastoma. Radiation Oncology, 2021, 16, 191.	1.2	6
16	Translation Initiation Machinery as a Tumor Selective Target for Radiosensitization. International Journal of Molecular Sciences, 2021, 22, 10664.	1.8	3
17	A simple, high-throughput method of protein and label removal from extracellular vesicle samples. Nanoscale, 2021, 13, 3737-3745.	2.8	6
18	Proteomic Biomarker Analysis of Serum from Japanese Field Mice (Apodemus Speciosus) Collected within the Fukushima Difficult-to-return Zone. Health Physics, 2021, 121, 564-573.	0.3	3

KEVIN CAMPHAUSEN

6

#	Article	IF	CITATIONS
19	Molecular Biology in Treatment Decision Processes—Neuro-Oncology Edition. International Journal of Molecular Sciences, 2021, 22, 13278.	1.8	0
20	Improving Radiation Response in Glioblastoma Using ECO/siRNA Nanoparticles Targeting DNA Damage Repair. Cancers, 2020, 12, 3260.	1.7	7
21	NCI-CONNECT: Comprehensive Oncology Network Evaluating Rare CNS Tumors—Histone Mutated Midline Glioma Workshop Proceedings*. Neuro-Oncology Advances, 2020, 2, vdaa007.	0.4	4
22	Cancer-Specific Immune Prognostic Signature in Solid Tumors and Its Relation to Immune Checkpoint Therapies. Cancers, 2020, 12, 2476.	1.7	39
23	Radiosensitizers in the temozolomide era for newly diagnosed glioblastoma. Neuro-Oncology Practice, 2020, 7, 268-276.	1.0	12
24	The prevalence of altered body image in patients with primary brain tumors: an understudied population. Journal of Neuro-Oncology, 2020, 147, 397-404.	1.4	6
25	The Olfactory Bulb Provides a Radioresistant Niche for Glioblastoma Cells. International Journal of Radiation Oncology Biology Physics, 2020, 107, 194-201.	0.4	4
26	Automated glioma grading on conventional MRI images using deep convolutional neural networks. Medical Physics, 2020, 47, 3044-3053.	1.6	86
27	Case Report: Single-Cell Transcriptomic Analysis of an Anaplastic Oligodendroglioma Post Immunotherapy. Frontiers in Oncology, 2020, 10, 601452.	1.3	1
28	A Serum Proteomic Signature Predicting Survival in Patients with Glioblastoma. Journal of Biochemistry and Analytical Studies, 2020, 4, .	0.1	4
29	Synthetic Lethal Drug Combinations Targeting Proteasome and Histone Deacetylase Inhibitors in TP53-Mutated Cancers. , 2020, 1, 42-47.		Ο
30	A Phase II Pilot Study of Avelumab in Combination with Hypofractionated Radiotherapy in Patients with Relapsed Refractory Multiple Myeloma. Blood, 2020, 136, 10-11.	0.6	0
31	DiscoverSL: an R package for multi-omic data driven prediction of synthetic lethality in cancers. Bioinformatics, 2019, 35, 701-702.	1.8	41
32	SL-BioDP: Multi-Cancer Interactive Tool for Prediction of Synthetic Lethality and Response to Cancer Treatment. Cancers, 2019, 11, 1682.	1.7	20
33	Pan-Cancer Analysis of Potential Synthetic Lethal Drug Targets Specific to Alterations in DNA Damage Response. Frontiers in Oncology, 2019, 9, 1136.	1.3	14
34	Circulating biomarkers for high-grade glioma. Biomarkers in Medicine, 2019, 13, 161-165.	0.6	16
35	Comparison of Proteomic Biodosimetry Biomarkers Across Five Different Murine Strains. Radiation Research, 2019, 192, 640.	0.7	10

The Quiescent Metabolic Phenotype of Glioma Stem Cells. , 2019, 12, 96-103.

#	Article	IF	CITATIONS
37	Clinical and radiobiological consideration of cyclical hypofractionated radiation therapy also known as QUAD Shot for neglected skin cancer disfiguring the face of a non-compliant patient who was refusing surgery and protracted radiation therapy: case report. Radiation Oncology Journal, 2019, 37, 143-148.	0.7	8
38	Inhibition of the Histone H3K27 Demethylase UTX Enhances Tumor Cell Radiosensitivity. Molecular Cancer Therapeutics, 2018, 17, 1070-1078.	1.9	31
39	Protein phosphatase 2A inhibition enhances radiation sensitivity and reduces tumor growth in chordoma. Neuro-Oncology, 2018, 20, 799-809.	0.6	18
40	Late toxicity in long-term survivors from a phase 2 study of concurrent radiation therapy, temozolomide and valproic acid for newly diagnosed glioblastoma. Neuro-Oncology Practice, 2018, 5, 246-250.	1.0	12
41	The DNA-PK Inhibitor VX-984 Enhances the Radiosensitivity of Glioblastoma Cells Grown <i>In Vitro</i> and as Orthotopic Xenografts. Molecular Cancer Therapeutics, 2018, 17, 1207-1216.	1.9	84
42	LB-100, a novel Protein Phosphatase 2A (PP2A) inhibitor, sensitizes malignant meningioma cells to the therapeutic effects of radiation. Cancer Letters, 2018, 415, 217-226.	3.2	28
43	Differentiating pseudoprogression from true progression: analysis of radiographic, biologic, and clinical clues in GBM. Journal of Neuro-Oncology, 2018, 139, 145-152.	1.4	29
44	The XPO1 Inhibitor Selinexor Inhibits Translation and Enhances the Radiosensitivity of Glioblastoma Cells Grown <i>In Vitro</i> and <i>In Vivo</i> . Molecular Cancer Therapeutics, 2018, 17, 1717-1726.	1.9	34
45	Radiation-induced alternative transcripts as detected in total and polysome-bound mRNA. Oncotarget, 2018, 9, 691-705.	0.8	6
46	Cyclical hypofractionated radiotherapy also known as "QUAD Shot―alone using intensity-modulated radiotherapy for squamous cell carcinoma of the parotid gland in an 85-year-old patient with multiple comorbidities. Head and Neck, 2017, 39, E55-E60.	0.9	5
47	Multivariate Analysis of Radiation Responsive Proteins to Predict Radiation Exposure in Total-Body Irradiation and Partial-Body Irradiation Models. Radiation Research, 2017, 187, 251.	0.7	35
48	Computational analysis of the mesenchymal signature landscape in gliomas. BMC Medical Genomics, 2017, 10, 13.	0.7	3
49	Quantitative imaging of pO ₂ in orthotopic murine gliomas: hypoxia correlates with resistance to radiation. Free Radical Research, 2017, 51, 861-871.	1.5	16
50	Brain tumor segmentation using holistically nested neural networks in MRI images. Medical Physics, 2017, 44, 5234-5243.	1.6	79
51	Histone Deacetylase Inhibitors and Tumor Radiosensitization. Cancer Drug Discovery and Development, 2017, , 57-78.	0.2	1
52	Expert consensus on re-irradiation for recurrent glioma. Radiation Oncology, 2017, 12, 194.	1.2	32
53	Re-irradiation for recurrent glioma- the NCI experience in tumor control, OAR toxicity and proposal of a novel prognostic scoring system. Radiation Oncology, 2017, 12, 191.	1.2	14
54	State-of-the-Art Advances in Radiation Biodosimetry for Mass Casualty Events Involving Radiation Exposure. Radiation Research, 2016, 186, 423-435.	0.7	65

#	Article	IF	CITATIONS
55	A phase I trial of cabozantinib and gemcitabine in advanced pancreatic cancer. Investigational New Drugs, 2016, 34, 733-739.	1.2	31
56	Polysome Profiling Links Translational Control to the Radioresponse of Glioblastoma Stem-like Cells. Cancer Research, 2016, 76, 3078-3087.	0.4	23
57	FOXM1 and STAT3 interaction confers radioresistance in glioblastoma cells. Oncotarget, 2016, 7, 77365-77377.	0.8	55
58	Modulation of miR-21 signaling by MPS1 in human glioblastoma. Oncotarget, 2016, 7, 52912-52927.	0.8	21
59	Glioblastoma radiosensitization by pimozide. Translational Cancer Research, 2016, 5, S1029-S1032.	0.4	4
60	Mitotic Protein Kinase 1: Role in Spindle Assembly Checkpoint Revisited. , 2016, 1, .		0
61	Coculture with astrocytes reduces the radiosensitivity of glioblastoma stemâ€like cells and identifies additional targets for radiosensitization. Cancer Medicine, 2015, 4, 1705-1716.	1.3	42
62	Molecular profiling of MPS1 gene silencing in U251 glioma cell line. Genomics Data, 2015, 6, 36-39.	1.3	1
63	Protein Phosphatase 2A Inhibition with LB100 Enhances Radiation-Induced Mitotic Catastrophe and Tumor Growth Delay in Glioblastoma. Molecular Cancer Therapeutics, 2015, 14, 1540-1547.	1.9	41
64	Targeting <i>MPS1</i> Enhances Radiosensitization of Human Glioblastoma by Modulating DNA Repair Proteins. Molecular Cancer Research, 2015, 13, 852-862.	1.5	50
65	Analysis of radiation therapy in a model of triple-negative breast cancer brain metastasis. Clinical and Experimental Metastasis, 2015, 32, 717-727.	1.7	21
66	A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients With Glioblastoma. International Journal of Radiation Oncology Biology Physics, 2015, 92, 986-992.	0.4	166
67	Serum Amyloid A as a Biomarker for Radiation Exposure. Radiation Research, 2015, 184, 14.	0.7	26
68	Current Clinical Trials Testing Combinations of Immunotherapy and Radiation. Seminars in Radiation Oncology, 2015, 25, 54-64.	1.0	123
69	Visualizing Molecular Profiles of Glioblastoma with GBM-BioDP. PLoS ONE, 2014, 9, e101239.	1.1	52
70	External Beam Radiation Therapy in Treatment of Malignant Pheochromocytoma and Paraganglioma. Frontiers in Oncology, 2014, 4, 166.	1.3	51
71	Radiation Therapy in Management of Sporadic and Neurofibromatosis Type 1-Associated Malignant Peripheral Nerve Sheath Tumors. Frontiers in Oncology, 2014, 4, 324.	1.3	80
72	microRNA Alterations Driving Acute and Late Stages of Radiation-Induced Fibrosis in a Murine Skin Model. International Journal of Radiation Oncology Biology Physics, 2014, 90, 44-52.	0.4	21

#	Article	IF	CITATIONS
73	A Pilot Study of Hypofractionated Stereotactic Radiation Therapy and Sunitinib in Previously Irradiated Patients With Recurrent High-Grade Glioma. International Journal of Radiation Oncology Biology Physics, 2014, 90, 369-375.	0.4	22
74	Magnetic Resonance Imaging of the Tumor Microenvironment in Radiotherapy: Perfusion, Hypoxia, and Metabolism. Seminars in Radiation Oncology, 2014, 24, 210-217.	1.0	61
75	Role of Early Postradiation Magnetic Resonance Imaging Scans in Children With Diffuse Intrinsic Pontine Glioma. International Journal of Radiation Oncology Biology Physics, 2012, 83, 1252-1256.	0.4	7
76	Early Experiences of Image Guided Prostate and Pelvic Nodal Irradiation With Intensity Modulated Radiation Treatment in Localized Prostate Cancer. World Journal of Oncology, 2012, 3, 16-22.	0.6	0
77	Molecular Targets for Tumor Radiosensitization. Chemical Reviews, 2009, 109, 2974-2988.	23.0	49
78	Postradiation Sensitization of the Histone Deacetylase Inhibitor Valproic Acid. Clinical Cancer Research, 2008, 14, 5410-5415.	3.2	98
79	Accuracy of 3D volumetric image registration based on CT, MR and PET/CT phantom experiments. Journal of Applied Clinical Medical Physics, 2008, 9, 17-36.	0.8	25
80	Registering Molecular Imaging Information into Anatomic Images with Improved Spatial Accuracy. , 2007, , .		3
81	Inhibition of Histone Deacetylation: A Strategy for Tumor Radiosensitization. Journal of Clinical Oncology, 2007, 25, 4051-4056.	0.8	160
82	Inhibition of Hsp90: A Multitarget Approach to Radiosensitization. Clinical Cancer Research, 2007, 13, 4326-4330.	3.2	90
83	A Prospective Trial of Radiation Alone vs Combination Chemotherapy Alone for Early-Stage Hodgkin's Disease: Implications of 25-Year Follow-Up to Current Combined Modality Therapy Blood, 2006, 108, 98-98.	0.6	7
84	Enhancement ofin vitro andin vivo tumor cell radiosensitivity by valproic acid. International Journal of Cancer, 2005, 114, 380-386.	2.3	194
85	From The Cover: Influence of in vivo growth on human glioma cell line gene expression: Convergent profiles under orthotopic conditions. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8287-8292.	3.3	107
86	Enhanced Radiation-Induced Cell Killing and Prolongation of Î ³ H2AX Foci Expression by the Histone Deacetylase Inhibitor MS-275. Cancer Research, 2004, 64, 316-321.	0.4	215
87	Enhancement of Xenograft Tumor Radiosensitivity by the Histone Deacetylase Inhibitor MS-275 and Correlation with Histone Hyperacetylation. Clinical Cancer Research, 2004, 10, 6066-6071.	3.2	132
88	Isoprostane levels in the urine of patients with prostate cancer receiving radiotherapy are not elevated. International Journal of Radiation Oncology Biology Physics, 2004, 58, 1536-1539.	0.4	17
89	Evaluation of chelating agents as anti-angiogenic therapy through copper chelation. Bioorganic and Medicinal Chemistry, 2004, 12, 5133-5140.	1.4	15
90	Flavopiridol enhances human tumor cell radiosensitivity and prolongs expression of gammaH2AX foci. Molecular Cancer Therapeutics, 2004, 3, 409-16.	1.9	31

#	Article	IF	CITATIONS
91	Combining radiation and molecular targeting in cancer therapy. Cancer Biology and Therapy, 2004, 3, 247-50.	1.5	12
92	Evaluation of copper chelation agents as anti-angiogenic therapy. Bioorganic and Medicinal Chemistry, 2003, 11, 4287-4293.	1.4	16
93	Radiation abscopal antitumor effect is mediated through p53. Cancer Research, 2003, 63, 1990-3.	0.4	187
94	Angiogenesis inhibitors and radiotherapy of primary tumours. Expert Opinion on Biological Therapy, 2002, 2, 477-481.	1.4	18
95	Judah Folkman: The Father of Modern Angiogenesis. Cell Cycle, 2002, 1, 296-297.	1.3	4