
Rulong Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2610013/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iodine-Mediated Thiolation of Substituted Naphthols/Naphthylamines and Arylsulfonyl Hydrazides via C(sp ²)–H Bond Functionalization. Journal of Órganic Chemistry, 2014, 79, 10605-10610.	3.2	119
2	Aerobic Synthesis of Substituted Quinoline from Aldehyde and Aniline: Copper-Catalyzed Intermolecular C–H Active and C–C Formative Cyclization. Organic Letters, 2013, 15, 4876-4879.	4.6	113
3	FeCl ₃ -Catalyzed synthesis of pyrrolo[1,2-a]quinoxaline derivatives from 1-(2-aminophenyl)pyrroles through annulation and cleavage of cyclic ethers. Chemical Communications, 2017, 53, 11572-11575.	4.1	62
4	Iron(II)-Catalyzed Denitration Reaction: Synthesis of 3-Methyl-2-arylimidazo[1,2-a]pyridine Derivatives from Aminopyridines and 2-Methylnitroolefins. Synlett, 2012, 23, 2961-2964.	1.8	59
5	I ₂ -catalyzed synthesis of substituted imidazoles from vinyl azides and benzylamines. Chemical Communications, 2015, 51, 6598-6600.	4.1	58
6	Iron atalyzed Synthesis of Substituted Thiazoles from Enamines and Elemental Sulfur through Câ^'S Bond Formation. Advanced Synthesis and Catalysis, 2018, 360, 4236-4240.	4.3	44
7	I2-Catalyzed Synthesis of Substituted Pyrroles from α-Amino Carbonyl Compounds and Aldehydes. Journal of Organic Chemistry, 2014, 79, 465-470.	3.2	43
8	Oneâ€Pot Synthesis of Benzene and Pyridine Derivatives <i>via</i> Copperâ€Catalyzed Coupling Reactions. Advanced Synthesis and Catalysis, 2017, 359, 2676-2681.	4.3	43
9	Oneâ€Pot Threeâ€Component Synthesis of 3â€nitroâ€2â€arylimidazo[1,2â€ <i>a</i>]pyridine Derivatives Using A an Oxidant. Chemistry - an Asian Journal, 2012, 7, 2028-2031.	Airas	41
10	Iron(III)/Iodineâ€Catalyzed C(<i>sp</i> ²)H Activation of α,βâ€Unsaturated Aldehydes/Ketones with Amidines: Synthesis of 1,2,4,5â€Tetrasubstituted Imidazoles. Advanced Synthesis and Catalysis, 2015, 357, 3868-3874.	4.3	40
11	Metal-free synthesis of 3-methylthiofurans from homopropargylic alcohols and DMSO via a tandem sulfenylation/cyclization reaction in a one-pot manner. Organic Chemistry Frontiers, 2016, 3, 1746-1749.	4.5	39
12	Copper-Mediated Aerobic Oxidative Synthesis of 3-Bromo-imidazo[1,2- <i>a</i>]pyridines with Pyridines and Enamides. Journal of Organic Chemistry, 2016, 81, 25-31.	3.2	37
13	Copper-catalyzed tandem aerobic oxidative cyclization for the synthesis of 4-cyanoalkylpyrrolo[1,2- <i>a</i>]quinoxalines from 1-(2-aminophenyl)pyrroles and cyclobutanone oxime esters. Chemical Communications, 2018, 54, 10738-10741.	4.1	37
14	A novel one-pot method for the synthesis of substituted furopyridines: iodine-mediated oxidation of enaminones by tandem metal-free cyclization. Chemical Communications, 2015, 51, 2573-2576.	4.1	36
15	Copper-Catalyzed Tandem Aerobic Oxidative Cyclization for the Synthesis of Polysubstituted Quinolines via C(sp ³)/C(sp ²)–H Bond Functionalization. Journal of Organic Chemistry, 2017, 82, 10110-10120.	3.2	35
16	Iodineâ€Mediated Synthesis of Aromatic Thioethers with Aromatic Amines and Sulfonyl Hydrazides in High Regioselectivity <i>via</i> C(<i>sp</i> ²)H Bond Functionalization. Advanced Synthesis and Catalysis, 2016, 358, 321-325.	4.3	34
17	Cleavage of C–C Bonds for the Synthesis of C2-Substituted Quinolines and Indoles by Catalyst-Controlled Tandem Annulation of 2-Vinylanilines and Alkynoates. Organic Letters, 2018, 20, 1534-1537.	4.6	34
18	AgNO2 as the NO Source for the Synthesis of Substituted Pyrazole N-Oxides from N-Propargylamines. Organic Letters, 2016, 18, 5928-5931.	4.6	32

Rulong Yan

#	Article	IF	CITATIONS
19	Iodothiocyanation/Nitration of Allenes with Potassium Thiocyanate/Silver Nitrite and Iodine. Advanced Synthesis and Catalysis, 2016, 358, 3130-3134.	4.3	23
20	TBAI/K ₂ S ₂ O ₈ Initiated Radical Cyclization to Synthesize <i>β</i> ― Arylsulfonyl Naphthalenes from Homopropargylic Alcohols and Sulfonyl Hydrazides. Advanced Synthesis and Catalysis, 2017, 359, 3248-3253.	4.3	21
21	Metal-free synthesis of substituted pyridines from aldehydes and NH4OAc under air. RSC Advances, 2014, 4, 50369-50372.	3.6	20
22	A method for accessing sulfanylfurans from homopropargylic alcohols and sulfonyl hydrazides. Organic and Biomolecular Chemistry, 2017, 15, 3571-3574.	2.8	20
23	An I ₂ -catalyzed oxidative cyclization for the synthesis of indolizines from aromatic/aliphatic olefins and α-picoline derivatives. RSC Advances, 2015, 5, 29424-29427.	3.6	19
24	tert-Butyl nitrite (TBN) as the N atom source for the synthesis of substituted cinnolines with 2-vinylanilines and a relevant mechanism was studied. Organic and Biomolecular Chemistry, 2017, 15, 6318-6322.	2.8	18
25	<i>tert</i> -Butyl Nitrite Promoted Oxidative Intermolecular Sulfonamination of Alkynes to Synthesize Substituted Sulfonyl Pyrroles from the Alkynylamines and Sulfinic Acids. Journal of Organic Chemistry, 2018, 83, 8636-8644.	3.2	18
26	B(C ₆ F ₅) ₃ -Catalyzed cyclization of alkynes: direct synthesis of 3-silyl heterocyclic compounds. Chemical Communications, 2020, 56, 11953-11956.	4.1	17
27	I ₂ â€Promoted [3+2] Cyclization of 1,3â€Diketones with Potassium Thiocyanate: a Route to Thiazolâ€2(3 <i>H</i>)â€One Derivatives. Advanced Synthesis and Catalysis, 2021, 363, 3240-3244.	4.3	14
28	Cu-Catalyzed Tandem Aerobic Oxidative Cyclization for the Synthesis of 3,3′-Bipyrroles from the Homopropargylic Amines. Organic Letters, 2018, 20, 5048-5052.	4.6	11
29	TFAAâ€Catalyzed Annulation Synthesis of Spiro Pyrrolo[1,2â€∢i>a]quinoxaline Derivatives from 1â€{2â€Aminophenyl)pyrroles and Benzoquinones/Ketones. Chemistry - an Asian Journal, 2019, 14, 2898-2902.	3.3	11
30	Synthesis of Benzimidazo[2,1- <i>a</i>]isoquinoline and Indolo[2,1- <i>a</i>]isoquinoline Derivatives via Copper-Catalyzed Silylation/Methylation of 2-Arylindoles and 2-Arylbenzimidazoles. Journal of Organic Chemistry, 2022, 87, 9056-9068.	3.2	11
31	Synthesis of 3â€Arylpyridines <i>via</i> Palladium/Copperâ€Catalyzed Annulation of Allylamine/1,3â€Propanediamine and Aldehydes. Advanced Synthesis and Catalysis, 2015, 357, 3732-3736.	4.3	10
32	A convenient access to allylic triflones with allenes and triflyl chloride in the presence of (EtO) ₂ P(O)H. Chemical Communications, 2019, 55, 7343-7345.	4.1	10
33	Copper-Catalyzed Synthesis of Alkyl-Substituted Pyrrolo[1,2-a]quinoxalines from 2-(1H-Pyrrol-1-yl)anilines and Alkylboronic Acids. Synlett, 2020, 31, 359-362.	1.8	10
34	Halogenations of substituted 2-alkylquinoline with iodine and halide exchange with AgF ₂ . RSC Advances, 2016, 6, 111713-111717.	3.6	9
35	Ring-opening/annulation reaction of cyclopropyl ethanols: concise access to thiophene aldehydes <i>via</i> C–S bond formation. Organic Chemistry Frontiers, 2019, 6, 3705-3709.	4.5	9
36	Synthesis of Fused B ontaining Heterocyclic Compounds and Their Relevant Optical Properties. European Journal of Organic Chemistry, 2018, 2018, 4812-4817.	2.4	8

Rulong Yan

#	Article	IF	CITATIONS
37	External Oxidantâ€Free Oxidative Tandem Cyclization: Nalâ€Catalyzed Thiolation for the Synthesis of 3â€Thiosubstituted Pyrroles. Advanced Synthesis and Catalysis, 2019, 361, 5112-5117.	4.3	8
38	Synthesis of 3-benzylidenetetrahydrofurans: Tf ₂ O-catalyzed hydroxylation/cyclization of cyclopropanemethanols with DMSO. Chemical Communications, 2020, 56, 15627-15630.	4.1	7
39	Fe-Catalyzed tandem cyclization for the synthesis of 3-nitrofurans from homopropargylic alcohols and Al(NO ₃) ₃ A·9H ₂ O. Organic and Biomolecular Chemistry, 2018, 16, 5232-5235.	2.8	6
40	TFAâ€Catalyzed [3+2] Spiroannulation of Cyclobutanols: A Route to Spiro[cyclobuta[a]indeneâ€7,1′â€cyclobutane] Skeletons. Chemistry - an Asian Journal, 2020, 15, 3812-3815.	3.3	6
41	Metal-Free C–S Bond Formation in Elemental Sulfur and Cyclobutanol Derivatives: The Synthesis of Substituted Thiophenes. Organic Letters, 2022, 24, 5309-5313.	4.6	6
42	Synthesis of Indoles from 2-Vinylanilines with PIFA or TFA and Quinones. Synlett, 2017, 28, 729-733.	1.8	5
43	I 2 â€Promoted Intramolecular Oxidative Cyclization of Butenyl Anilines: A Facile Route to Benzo[b]azepines. Chemistry - an Asian Journal, 2021, 16, 2614-2617.	3.3	5
44	A catalyst-free method for the synthesis of 1,4,2-dithiazoles from isothiocyanates and hydroxylamine triflic acid salts. Organic and Biomolecular Chemistry, 2021, 19, 6206-6209.	2.8	5
45	Iron-Catalyzed Ring Expansion of Cyclobutanols for the Synthesis of 1-Pyrrolines by Using MsONH3OTf. Organic Letters, 2022, 24, 771-775.	4.6	5
46	CuBr2-catalyzed ring opening/formylation reaction of cyclopropyl carbinols with DMF to synthesize formate esters. Tetrahedron Letters, 2020, 61, 152506.	1.4	3
47	Ironâ€Catalyzed Oneâ€6tep Synthesis of Isothiazolone/1,2â€6elenazolone Derivatives via [3+1+1] Annulation of Cyclopropenones, Anilines, and Elemental Chalcogens. Advanced Synthesis and Catalysis, 2022, 364, 715-719.	4.3	2