Lei Shen

List of Publications by Citations

Source: https://exaly.com/author-pdf/2609957/lei-shen-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

32 630 14 24 g-index

36 741 6.6 avg, IF L-index

#	Paper	IF	Citations
32	A mobile precursor determines amyloid-[peptide fibril formation at interfaces. <i>Journal of the American Chemical Society</i> , 2012 , 134, 14172-8	16.4	73
31	How Many Stages in the Coil-to-Globule Transition of Linear Homopolymer Chains in a Dilute Solution?. <i>Macromolecules</i> , 2007 , 40, 4750-4752	5.5	65
30	New insights into the design of conjugated polymers for intramolecular singlet fission. <i>Nature Communications</i> , 2018 , 9, 2999	17.4	61
29	Regulation of Drug Release by Tuning Surface Textures of Biodegradable Polymer Microparticles. <i>ACS Applied Materials & Discourt & Discourt Materials & Discourt Materials & Discourt &</i>	9.5	52
28	Biocompatible polymer/quantum dots hybrid materials: current status and future developments. Journal of Functional Biomaterials, 2011 , 2, 355-72	4.8	48
27	Block Copolymer Capsules with Structure-Dependent Release Behavior. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14633-14637	16.4	46
26	Surface Roughness Modulates Diffusion and Fibrillation of Amyloid-Peptide. <i>Langmuir</i> , 2016 , 32, 8238-	·4 4	44
25	Kinetics of pH-Induced formation and dissociation of polymeric vesicles assembled from a water-soluble zwitterionic diblock copolymer. <i>Langmuir</i> , 2008 , 24, 10019-25	4	38
24	The generation of polymeric nano-bowls through 3D confined assembly and disassembly. <i>Soft Matter</i> , 2016 , 12, 3683-7	3.6	25
23	Two dimensional nanoarrays of individual protein molecules. <i>Small</i> , 2012 , 8, 3169-74	11	21
22	Facile Strategy to Generate Aligned Polymer Nanofibers: Effects on Cell Adhesion. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 1566-1574	9.5	19
21	Heterogeneous surfaces to repel proteins. Advances in Colloid and Interface Science, 2016, 228, 40-54	14.3	19
20	Kinetic study of A[11-42) amyloidosis in the presence of ganglioside-containing vesicles. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 185, 110615	6	17
19	Evidence of a mobile precursor state in nonspecific protein adsorption. <i>Langmuir</i> , 2011 , 27, 7059-64	4	14
18	Gel Phase Membrane Retards Amyloid Peptide (1-42) Fibrillation by Restricting Slaved Diffusion of Peptides on Lipid Bilayers. <i>Langmuir</i> , 2018 , 34, 8408-8414	4	14
17	Anti-biofouling surface with sub-20 nm heterogeneous nanopatterns. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 1157-1162	7.3	11
16	Unravelling the mechanism of amyloid-peptide oligomerization and fibrillation at chiral interfaces. <i>Chemical Communications</i> , 2019 , 55, 13725-13728	5.8	8

LIST OF PUBLICATIONS

15	A mobile precursor determines protein resistance on nanostructured surfaces. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 12527-12534	3.6	7	
14	Oriented Protein Nanoarrays on Block Copolymer Template. <i>Macromolecular Rapid Communications</i> , 2016 , 37, 494-9	4.8	7	
13	Membrane environment can enhance the interaction of glycan binding protein to cell surface glycan receptors. <i>ACS Chemical Biology</i> , 2014 , 9, 1877-84	4.9	7	
12	Quantification of Multivalency in Protein-Oligomer-Coated Nanoparticles Targeting Dynamic Membrane Glycan Receptors. <i>Langmuir</i> , 2018 , 34, 8415-8421	4	6	
11	Crystal-Like Polymer Microdiscs. <i>Macromolecules</i> , 2015 , 48, 5944-5950	5.5	5	
10	Heterogeneous patterns on block copolymer thin film via solvent annealing: Effect on protein adsorption. <i>Journal of Chemical Physics</i> , 2015 , 142, 101908	3.9	5	
9	The electric double layer structure modulates poly-dT conformation and adsorption kinetics at the cationic lipid bilayer interface. <i>Soft Matter</i> , 2019 , 15, 4445-4453	3.6	4	
8	Self-Coiling of Single-Stranded Protofibrils into Rings: A Pathway of Alzheimer Peptide Amyloidosis on Lipid Membranes. <i>ACS Macro Letters</i> , 2020 , 9, 813-818	6.6	3	
7	Nanopatterned Polymer Surface Modulates Twist Polymorphism in a Single Amyloid Fibril. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e1900619	4.8	2	
6	Surface effects on the degree of twist in amyloid fibril structures. <i>Chemical Communications</i> , 2020 , 56, 3147-3150	5.8	2	
5	Diffusion dynamics of a single collapsed homopolymer globule at the solid-liquid interface. <i>Soft Matter</i> , 2020 , 16, 2431-2436	3.6	2	
4	Hierarchical Self-Assembly Mechanism of Ladder-Like Orientated AIIO Single-Stranded Protofibrils into Multistranded Mature Fibrils. <i>ACS Macro Letters</i> , 2020 , 9, 1759-1765	6.6	2	
3	Statistical Binding Matching between Influenza A Virus and Dynamic Glycan Clusters Determines Its Adhesion onto Lipid Membranes. <i>Langmuir</i> , 2020 , 36, 15212-15219	4	1	
2	Block Copolymer Capsules with Structure-Dependent Release Behavior. <i>Angewandte Chemie</i> , 2016 , 128, 14853-14857	3.6	1	
1	Visualizing Super-Diffusion, Oligomerization, and Fibrillation of Amyloid-Peptide Chains along Tubular Membranes ACS Macro Letters. 2021 , 10, 1295-1299	6.6	O	