Antonina Andreeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2609859/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Data growth and its impact on the SCOP database: new developments. Nucleic Acids Research, 2007, 36, D419-D425.	6.5	854
2	SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Research, 2004, 32, 226D-229.	6.5	815
3	Structures of SAS-6 Suggest Its Organization in Centrioles. Science, 2011, 331, 1196-1199.	6.0	284
4	SCOP2 prototype: a new approach to protein structure mining. Nucleic Acids Research, 2014, 42, D310-D314.	6.5	260
5	The SCOP database in 2020: expanded classification of representative family and superfamily domains of known protein structures. Nucleic Acids Research, 2020, 48, D376-D382.	6.5	238
6	A bimodular mechanism of calcium control in eukaryotes. Nature, 2012, 491, 468-472.	13.7	110
7	Evolution of protein fold in the presence of functional constraints. Current Opinion in Structural Biology, 2006, 16, 399-408.	2.6	104
8	The structural basis for catalysis and substrate specificity of a rhomboid protease. EMBO Journal, 2010, 29, 3797-3809.	3.5	97
9	Biophysical characterizations of human mitochondrial transcription factor A and its binding to tumor suppressor p53. Nucleic Acids Research, 2009, 37, 6765-6783.	6.5	95
10	Core domain interactions in full-length p53 in solution. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2115-2119.	3.3	91
11	Crystal structures of the CPAP/STIL complex reveal its role in centriole assembly and human microcephaly. ELife, 2013, 2, e01071.	2.8	90
12	Structure-based evaluation of sequence comparison and fold recognition alignment accuracy 1 1Edited by B. Honig. Journal of Molecular Biology, 2000, 297, 1003-1013.	2.0	81
13	SISYPHUS—structural alignments for proteins with non-trivial relationships. Nucleic Acids Research, 2007, 35, D253-D259.	6.5	74
14	Assessment of the CASP4 fold recognition category. Proteins: Structure, Function and Bioinformatics, 2001, 45, 55-67.	1.5	61
15	Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains. Nucleic Acids Research, 2012, 41, D499-D507.	6.5	53
16	Mechanism of completion of peptidyltransferase centre assembly in eukaryotes. ELife, 2019, 8, .	2.8	49
17	Revised structure of the AbrB N-terminal domain unifies a diverse superfamily of putative DNA-binding proteins. FEBS Letters, 2005, 579, 5669-5674.	1.3	45
18	Mapping the physical and functional interactions between the tumor suppressors p53 and BRCA2. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8587-8592	3.3	44

#	Article	IF	CITATIONS
19	Genome3D: exploiting structure to help users understand their sequences. Nucleic Acids Research, 2015, 43, D382-D386.	6.5	42
20	Interaction between the Transactivation Domain of p53 and PC4 Exemplifies Acidic Activation Domains as Single-stranded DNA Mimics. Journal of Biological Chemistry, 2009, 284, 21728-21737.	1.6	40
21	Solution structure of the C4 zinc finger domain of HDM2. Protein Science, 2006, 15, 384-389.	3.1	36
22	The Ciliopathy-Associated Cep104 Protein Interacts with Tubulin and Nek1 Kinase. Structure, 2017, 25, 146-156.	1.6	36
23	Structural classification of proteins and structural genomics: new insights into protein folding and evolution. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1190-1197.	0.7	35
24	Direct binding of CEP85 to STIL ensures robust PLK4 activation and efficient centriole assembly. Nature Communications, 2018, 9, 1731.	5.8	32
25	Structural validation and assessment of AlphaFold2 predictions for centrosomal and centriolar proteins and their complexes. Communications Biology, 2022, 5, 312.	2.0	30
26	Adaptive Evolution of p53 Thermodynamic Stability. Journal of Molecular Biology, 2009, 393, 161-175.	2.0	28
27	Tracing the Evolution of the p53 Tetramerization Domain. Structure, 2014, 22, 1301-1310.	1.6	27
28	Spectrophotometric Determination of Diclofenac Sodium in Gel-Ointment. Analytical Letters, 1997, 30, 2235-2249.	1.0	26
29	Solution Structure of the U11-48K CHHC Zinc-Finger Domain that Specifically Binds the 5′ Splice Site of U12-Type Introns. Structure, 2009, 17, 294-302.	1.6	25
30	A novel CHHC Zn-finger domain found in spliceosomal proteins and tRNA modifying enzymes. Bioinformatics, 2008, 24, 2277-2280.	1.8	23
31	Solution Structure of ASPP2 N-terminal Domain (N-ASPP2) Reveals a Ubiquitin-like Fold. Journal of Molecular Biology, 2007, 371, 948-958.	2.0	22
32	Investigating Protein Structure and Evolution with SCOP2. Current Protocols in Bioinformatics, 2015, 49, 1.26.1-1.26.21.	25.8	18
33	Consequences of point mutations in melanoma-associated antigen 4 (MAGE-A4) protein: Insights from structural and biophysical studies. Scientific Reports, 2016, 6, 25182.	1.6	17
34	Disease-Associated Mutations in CEP120 Destabilize the Protein and Impair Ciliogenesis. Cell Reports, 2018, 23, 2805-2818.	2.9	16
35	Genome3D: integrating a collaborative data pipeline to expand the depth and breadth of consensus protein structure annotation. Nucleic Acids Research, 2020, 48, D314-D319.	6.5	13
36	Insight into the secondary structure of chloramphenicol acetyltransferase type I — computer analysis and FT-IR spectroscopic characterization of the protein structure. Journal of Molecular Structure, 2001, 565-566, 177-182.	1.8	11

ANTONINA ANDREEVA

#	Article	IF	CITATIONS
37	Molecular mechanisms underlying the role of the centriolar CEP164-TTBK2 complex in ciliopathies. Structure, 2022, 30, 114-128.e9.	1.6	11
38	Second Derivative Spectrophotometric Determination of the Degradation Products of Diclofenac Sodium in Gel-Ointment. Analytical Letters, 1998, 31, 117-129.	1.0	9
39	Crystal Structure of a Group I Energy Coupling Factor Vitamin Transporter S Component in Complex with Its Cognate Substrate. Cell Chemical Biology, 2016, 23, 827-836.	2.5	9
40	Classification of Proteins: Available Structural Space for Molecular Modeling. Methods in Molecular Biology, 2011, 857, 1-31.	0.4	7
41	Lessons from making the Structural Classification of Proteins (SCOP) and their implications for protein structure modelling. Biochemical Society Transactions, 2016, 44, 937-943.	1.6	6
42	A fortuitous insight into a common mode of RNA recognition by the dsRNA-specific zinc fingers. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, E128-9.	3.3	4
43	Substrate recognition determinants of human elF2α phosphatases. Open Biology, 2021, 11, 210205.	1.5	4
44	Crystallization of type I chloramphenicol acetyltransferase: an approach based on the concept of ionic strength reducers. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 101-103.	2.5	1
45	Deaminated purine bypass by DNA polymerase $\hat{I}\cdot$. Biochemical Journal, 2021, 478, 1309-1313.	1.7	0