Paul Schimmel ## List of Publications by Year in Descending Order Source: https://exaly.com/author-pdf/2608942/paul-schimmel-publications-by-year.pdf Version: 2024-04-19 This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above. The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article. | 80 | 5,379 citations | 32 | 73 | |-------------|-----------------|---------------------|---------| | papers | | h-index | g-index | | 85 | 5,908 | 19.1 avg, IF | 5.71 | | ext. papers | ext. citations | | L-index | | # | Paper | IF | Citations | |----|---|-----------------|-----------| | 80 | Regulation of ex-translational activities is the primary function of the multi-tRNA synthetase complex. <i>Nucleic Acids Research</i> , 2021 , 49, 3603-3616 | 20.1 | 7 | | 79 | CMT2N-causing aminoacylation domain mutants enable Nrp1 interaction with AlaRS. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118, | 11.5 | 2 | | 78 | PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. <i>Nature Cell Biology</i> , 2021 , 23, 424-436 | 23.4 | 25 | | 77 | X-shaped structure of bacterial heterotetrameric tRNA synthetase suggests cryptic prokaryote functions and a rationale for synthetase classifications. <i>Nucleic Acids Research</i> , 2021 , 49, 10106-10119 | 20.1 | 5 | | 76 | Relaxed sequence constraints favor mutational freedom in idiosyncratic metazoan mitochondrial tRNAs. <i>Nature Communications</i> , 2020 , 11, 969 | 17.4 | 8 | | 75 | The endless frontier of tRNA synthetases. <i>The Enzymes</i> , 2020 , 48, 1-10 | 2.3 | 1 | | 74 | CMT disease severity correlates with mutation-induced open conformation of histidyl-tRNA synthetase, not aminoacylation loss, in patient cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 19440-19448 | 11.5 | 16 | | 73 | Sca-1 As a Marker of Stress-Induced Thrombopoiesis in Mice. <i>Blood</i> , 2019 , 134, 1068-1068 | 2.2 | 1 | | 72 | An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function. <i>RNA Biology</i> , 2018 , 15, 649-658 | 4.8 | 11 | | 71 | Tyrosyl-tRNA synthetase stimulates thrombopoietin-independent hematopoiesis accelerating recovery from thrombocytopenia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E8228-E8235 | 11.5 | 24 | | 70 | ANKRD16 prevents neuron loss caused by an editing-defective tRNA synthetase. <i>Nature</i> , 2018 , 557, 51 | 0- <u>5</u> 1.5 | 16 | | 69 | Distinct ways of G:U recognition by conserved tRNA binding motifs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 7527-7532 | 11.5 | 13 | | 68 | Alternative stable conformation capable of protein misinteraction links tRNA synthetase to peripheral neuropathy. <i>Nucleic Acids Research</i> , 2017 , 45, 8091-8104 | 20.1 | 27 | | 67 | Double mimicry evades tRNA synthetase editing by toxic vegetable-sourced non-proteinogenic amino acid. <i>Nature Communications</i> , 2017 , 8, 2281 | 17.4 | 30 | | 66 | Evolutionary Gain of Alanine Mischarging to Noncognate tRNAs with a G4:U69 Base Pair. <i>Journal of the American Chemical Society</i> , 2016 , 138, 12948-12955 | 16.4 | 27 | | 65 | Alternative splicing creates two new architectures for human tyrosyl-tRNA synthetase. <i>Nucleic Acids Research</i> , 2016 , 44, 1247-55 | 20.1 | 5 | | 64 | Extracellular Tyrosyl-tRNA Synthetase Is a Potent Stimulator of Thrombocytopoiesis. <i>Blood</i> , 2016 , 128, 1476-1476 | 2.2 | | ## (2001-2016) | 63 | p53-Dependent DNA damage response sensitive to editing-defective tRNA synthetase in zebrafish. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 8460-5 | 11.5 | 4 | |----|---|------|-----| | 62 | A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol. <i>Nature</i> , 2015 , 519, 370-3 | 50.4 | 101 | | 61 | The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs. <i>Science Translational Medicine</i> , 2015 , 7, 288ra77 | 17.5 | 55 | | 60 | RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. <i>Science</i> , 2014 , 345, 455-9 | 33.3 | 263 | | 59 | Human tRNA synthetase catalytic nulls with diverse functions. <i>Science</i> , 2014 , 345, 328-32 | 33.3 | 81 | | 58 | The selective tRNA aminoacylation mechanism based on a single GD pair. <i>Nature</i> , 2014 , 510, 507-11 | 50.4 | 61 | | 57 | Deficiencies in tRNA synthetase editing activity cause cardioproteinopathy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 17570-5 | 11.5 | 53 | | 56 | Structural switch of lysyl-tRNA synthetase between translation and transcription. <i>Molecular Cell</i> , 2013 , 49, 30-42 | 17.6 | 104 | | 55 | Essential nontranslational functions of tRNA synthetases. <i>Nature Chemical Biology</i> , 2013 , 9, 145-53 | 11.7 | 246 | | 54 | Mistranslation and its control by tRNA synthetases. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2011 , 366, 2965-71 | 5.8 | 27 | | 53 | New functions of aminoacyl-tRNA synthetases beyond translation. <i>Nature Reviews Molecular Cell Biology</i> , 2010 , 11, 668-74 | 48.7 | 228 | | 52 | An editing activity that prevents mistranslation and connection to disease. <i>Journal of Biological Chemistry</i> , 2008 , 283, 28777-82 | 5.4 | 9 | | 51 | Translation silenced by fused pair of tRNA synthetases. <i>Cell</i> , 2004 , 119, 147-8 | 56.2 | 1 | | 50 | Crystal Structure of an EMAP-II-Like Cytokine Released from a Human tRNA Synthetase. <i>Helvetica Chimica Acta</i> , 2003 , 86, 1246-1257 | 2 | 33 | | 49 | tRNA structure goes from L to lambda. <i>Cell</i> , 2003 , 113, 276-8 | 56.2 | 12 | | 48 | Introducing New Amino Acids into Proteins. Scientific World Journal, The, 2002, 2, 47-48 | 2.2 | | | 47 | Structure-based phylogeny of class IIa tRNA synthetases in relation to an unusual biochemistry. <i>Journal of Molecular Evolution</i> , 2001 , 53, 261-8 | 3.1 | 20 | | 46 | Simultaneous binding of two proteins to opposite sides of a single transfer RNA. <i>Nature Structural Biology</i> , 2001 , 8, 344-8 | | 29 | | 45 | An aminoacyl tRNA synthetase whose sequence fits into neither of the two known classes. <i>Nature</i> , 2001 , 411, 110-4 | 50.4 | 42 | |----|--|-------|-----| | 44 | Aminoacyl-tRNA synthetases: potential markers of genetic code development. <i>Trends in Biochemical Sciences</i> , 2001 , 26, 591-6 | 10.3 | 127 | | 43 | Two classes of tRNA synthetases suggested by sterically compatible dockings on tRNA acceptor stem. <i>Cell</i> , 2001 , 104, 191-3 | 56.2 | 139 | | 42 | Industry benefits from the public funding of intellectual curiosity. <i>Nature</i> , 2000 , 406, 826 | 50.4 | | | 41 | Public funding of intellectual curiosity. <i>IUBMB Life</i> , 2000 , 50, 345-6 | 4.7 | 1 | | 40 | RNA scaffolds for minihelix-based aminoacyl transfer: design of "transpeptizymes". <i>Journal of Biomolecular Structure and Dynamics</i> , 2000 , 17 Suppl 1, 29-37 | 3.6 | 1 | | 39 | Errors from selective disruption of the editing center in a tRNA synthetase. <i>Biochemistry</i> , 2000 , 39, 818 | 0-962 | 45 | | 38 | Inhibitors of aminoacyl-tRNA synthetases as novel anti-infectives. <i>Expert Opinion on Investigational Drugs</i> , 2000 , 9, 1767-75 | 5.9 | 56 | | 37 | Nucleotide determinants for tRNA-dependent amino acid discrimination by a class I tRNA synthetase. <i>Biochemistry</i> , 1999 , 38, 16898-903 | 3.2 | 32 | | 36 | Two distinct cytokines released from a human aminoacyl-tRNA synthetase. <i>Science</i> , 1999 , 284, 147-51 | 33.3 | 407 | | 35 | Atomic Determinants for Aminoacylation of RNA Minihelices and Relationship to Genetic Code. <i>Accounts of Chemical Research</i> , 1999 , 32, 368-375 | 24.3 | 49 | | 34 | Evidence for breaking domain-domain functional communication in a synthetase-tRNA complex. <i>Biochemistry</i> , 1999 , 38, 16359-65 | 3.2 | 22 | | 33 | Aminoacyl tRNA synthetases as targets for new anti-infectives. FASEB Journal, 1998, 12, 1599-1609 | 0.9 | 141 | | 32 | Reconstruction of quaternary structures of class II tRNA synthetases by rational mutagenensis of a conserved domain. <i>Biochemistry</i> , 1997 , 36, 15041-8 | 3.2 | 21 | | 31 | Zinc-dependent tRNA binding by a peptide element within a tRNA synthetase. <i>Biochemistry</i> , 1997 , 36, 6739-44 | 3.2 | 13 | | 30 | Discrete determinants in transfer RNA for editing and aminoacylation. <i>Science</i> , 1997 , 276, 1250-2 | 33.3 | 82 | | 29 | A mechanism for reducing entropic cost of induced fit in proteinRNA recognition. <i>Biochemistry</i> , 1996 , 35, 8095-102 | 3.2 | 19 | | 28 | Evidence that specificity of microhelix charging by a class I tRNA synthetase occurs in the transition state of catalysis. <i>Biochemistry</i> , 1996 , 35, 608-15 | 3.2 | 26 | | 27 | C-terminal zinc-containing peptide required for RNA recognition by a class I tRNA synthetase. <i>Biochemistry</i> , 1996 , 35, 4139-45 | 3.2 | 22 | |----|--|------|-----| | 26 | Aminoacylation error correction. <i>Nature</i> , 1996 , 384, 33-4 | 50.4 | 205 | | 25 | aDistortedaRNA helix recognition. <i>Nature</i> , 1996 , 384, 422 | 50.4 | 5 | | 24 | Aminoacylation of RNA minihelices: implications for tRNA synthetase structural design and evolution. <i>Critical Reviews in Biochemistry and Molecular Biology</i> , 1993 , 28, 309-22 | 8.7 | 29 | | 23 | Evidence for distinct locations for metal binding sites in two closely related class I tRNA synthetases. <i>Journal of Biomolecular Structure and Dynamics</i> , 1993 , 11, 571-81 | 3.6 | 7 | | 22 | Aminoacylation of RNA oligonucleotides: minimalist structures and origin of specificity. <i>FASEB Journal</i> , 1993 , 7, 282-9 | 0.9 | 29 | | 21 | Idiographic representation of conserved domain of a class II tRNA synthetase of unknown structure. <i>Protein Science</i> , 1993 , 2, 2259-62 | 6.3 | 31 | | 20 | Amino acid binding by the class I aminoacyl-tRNA synthetases: role for a conserved proline in the signature sequence. <i>Protein Science</i> , 1992 , 1, 575-81 | 6.3 | 18 | | 19 | Intron locations and functional deletions in relation to the design and evolution of a subgroup of class I tRNA synthetases. <i>Protein Science</i> , 1992 , 1, 1387-91 | 6.3 | 20 | | 18 | Functional contacts of a transfer RNA synthetase with 2ahydroxyl groups in the RNA minor groove. <i>Nature</i> , 1992 , 357, 513-5 | 50.4 | 118 | | 17 | A metal-binding motif implicated in RNA recognition by an aminoacyl-tRNA synthetase and by a retroviral gene product. <i>Molecular Microbiology</i> , 1992 , 6, 1259-62 | 4.1 | 7 | | 16 | Small RNA helices as substrates for aminoacylation and their relationship to charging of transfer RNAs. <i>FEBS Journal</i> , 1992 , 206, 315-21 | | 39 | | 15 | Classes of aminoacyl-tRNA synthetases and the establishment of the genetic code. <i>Trends in Biochemical Sciences</i> , 1991 , 16, 1-3 | 10.3 | 68 | | 14 | RNA minihelices and the decoding of genetic information. <i>FASEB Journal</i> , 1991 , 5, 2180-7 | 0.9 | 22 | | 13 | Alanine transfer RNA synthetase: structure-function relationships and molecular recognition of transfer RNA. <i>Advances in Enzymology and Related Areas of Molecular Biology</i> , 1990 , 63, 233-70 | | 5 | | 12 | Understanding structural relationships in proteins of unsolved three-dimensional structure. <i>Proteins: Structure, Function and Bioinformatics</i> , 1990 , 7, 99-111 | 4.2 | 88 | | 11 | Construction of intra-domain chimeras of aminoacyl-tRNA synthetases. <i>Journal of Biomolecular Structure and Dynamics</i> , 1989 , 7, 225-34 | 3.6 | 5 | | 10 | Aminoacylation of RNA minihelices with alanine. <i>Nature</i> , 1989 , 337, 478-81 | 50.4 | 309 | | 9 | A simple structural feature is a major determinant of the identity of a transfer RNA. <i>Nature</i> , 1988 , 333, 140-5 | 50.4 | 560 | |---|--|------|-----| | 8 | Evolution and Future of Biotechnology. ACS Symposium Series, 1988, 30-35 | 0.4 | O | | 7 | Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. <i>Annual Review of Biochemistry</i> , 1987 , 56, 125-58 | 29.1 | 489 | | 6 | Synthesis of two polypeptide subunits of an aminoacyl tRNA synthetase as a single polypeptide chain. <i>Journal of Biomolecular Structure and Dynamics</i> , 1983 , 1, 225-9 | 3.6 | 2 | | 5 | A new troponin T and cDNA clones for 13 different muscle proteins, found by shotgun sequencing. <i>Nature</i> , 1983 , 302, 718-21 | 50.4 | 123 | | 4 | Modular arrangement of functional domains along the sequence of an aminoacyl tRNA synthetase. <i>Nature</i> , 1983 , 306, 441-7 | 50.4 | 178 | | 3 | A covalent adduct between the uracil ring and the active site of an aminoacyl tRNA synthetase. <i>Nature</i> , 1982 , 298, 136-40 | 50.4 | 79 | | 2 | An aminoacyl tRNA synthetase binds to a specific DNA sequence and regulates its gene transcription. <i>Nature</i> , 1981 , 291, 632-5 | 50.4 | 134 | | 1 | Small RNA Oligonucleotide Substrates for Specific Aminoacylations349-370 | | 16 |