Xiaofeng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2608738/publications.pdf Version: 2024-02-01

XIAOFENC LILL

#	Article	IF	CITATIONS
1	Optical fiber amplifier and thermometer assisted point-of-care biosensor for detection of cancerous exosomes. Sensors and Actuators B: Chemical, 2022, 351, 130893.	7.8	10
2	Sequence-Dependent DNA-Mediated Fluorescent Polydopamine Nanoparticles for Detection and Removal of Copper(II) ions. ACS Applied Nano Materials, 2022, 5, 2038-2047.	5.0	4
3	Polymer-assisted Au@PDA nanoparticles lyophilized powder with high stability and low adsorption and its application in colorimetric biosensing. Analytica Chimica Acta, 2022, 1220, 339995.	5.4	5
4	Microcapillary-based multicolor assay for quantitative and sensitive point-of-care testing of proteins. Biosensors and Bioelectronics, 2021, 189, 113370.	10.1	3
5	Exploring Interactions of Aptamers with Al² ₄₀ Amyloid Aggregates and Its Application: Detection of Amyloid Aggregates. Analytical Chemistry, 2020, 92, 2853-2858.	6.5	29
6	Investigation of the interaction between split aptamer and vascular endothelial growth factor 165 using single molecule force spectroscopy. Journal of Molecular Recognition, 2020, 33, e2829.	2.1	5
7	Engineering and Application of a Myoglobin Binding Split Aptamer. Analytical Chemistry, 2020, 92, 14576-14581.	6.5	9
8	The mechanisms of HSA@PDA/Fe nanocomposites with enhanced nanozyme activity and their application in intracellular H ₂ O ₂ detection. Nanoscale, 2020, 12, 24206-24213.	5.6	15
9	Photothermal and fluorescent dual-mode assay based on the formation of polydopamine nanoparticles for accurate determination of organophosphate pesticides. Mikrochimica Acta, 2020, 187, 652.	5.0	16
10	DNA Hydrogelation-Enhanced Imaging Ellipsometry for Sensing Exosomal microRNAs with a Tunable Detection Range. Analytical Chemistry, 2020, 92, 11953-11959.	6.5	25
11	Surface plasmon resonance assay for exosomes based on aptamer recognition and polydopamine-functionalized gold nanoparticles for signal amplification. Mikrochimica Acta, 2020, 187, 251.	5.0	31
12	Construction of Bio/Nanointerfaces: Stable Gold Nanoparticle Bioconjugates in Complex Systems. ACS Applied Materials & Interfaces, 2019, 11, 40817-40825.	8.0	13
13	Point-of-Care Assay of Alkaline Phosphatase Enzymatic Activity Using a Thermometer or Temperature Discoloration Sticker as Readout. Analytical Chemistry, 2019, 91, 7943-7949.	6.5	82
14	Direct quantification of cancerous exosomes via surface plasmon resonance with dual gold nanoparticle-assisted signal amplification. Biosensors and Bioelectronics, 2019, 135, 129-136.	10.1	154
15	Aptamer as a Tool for Investigating the Effects of Electric Field on Al² ₄₀ Monomer and Aggregates Using Single-Molecule Force Spectroscopy. Analytical Chemistry, 2019, 91, 1954-1961.	6.5	17
16	Optical fiber amplifier for quantitative and sensitive point-of-care testing of myoglobin and miRNA-141. Biosensors and Bioelectronics, 2019, 129, 87-92.	10.1	28
17	Low-Fouling Surface Plasmon Resonance Sensor for Highly Sensitive Detection of MicroRNA in a Complex Matrix Based on the DNA Tetrahedron. Analytical Chemistry, 2018, 90, 12584-12591.	6.5	80
18	High sensitivity surface plasmon resonance biosensor for detection of microRNA based on gold nanoparticles-decorated molybdenum sulfide. Analytica Chimica Acta, 2017, 993, 55-62.	5.4	62