Zhongshan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2608600/publications.pdf Version: 2024-02-01

7HONCSHAN LI

#	Article	IF	CITATIONS
1	A detailed study on the micro-explosion of burning iron particles in hot oxidizing environments. Combustion and Flame, 2022, 238, 111755.	5.2	21
2	Spatiotemporal control of femtosecond laser filament-triggered discharge and its application in diagnosing gas flow fields. Plasma Science and Technology, 2022, 24, 025402.	1.5	2
3	Quantitative Hydrogen Chloride Detection in Combustion Environments Using Tunable Diode Laser Absorption Spectroscopy with Comprehensive Investigation of Hot Water Interference. Applied Spectroscopy, 2022, 76, 207-215.	2.2	6
4	Flame structure and burning velocity of ammonia/air turbulent premixed flames at high Karlovitz number conditions. Combustion and Flame, 2022, 238, 111943.	5.2	21
5	Quantitative laser diagnostics on trimethylindium pyrolysis and photolysis for functional nanoparticle growth. Measurement Science and Technology, 2022, 33, 055201.	2.6	2
6	Understanding the characteristics of non-equilibrium alternating current gliding arc discharge in a variety of gas mixtures (air, N2, Ar, Ar/O2, and Ar/CH4) at elevated pressures (1–5 atm). Physics of Plasmas, 2022, 29, .	1.9	2
7	Structure and scalar correlation of ammonia/air turbulent premixed flames in the distributed reaction zone regime. Combustion and Flame, 2022, 241, 112090.	5.2	17
8	lgnition and combustion behavior of single micron-sized iron particle in hot gas flow. Combustion and Flame, 2022, 241, 112099.	5.2	22
9	Simultaneous measurements of velocity and concentration of gas flow using femtosecond laser-induced chemiluminescence. Optics and Lasers in Engineering, 2022, 155, 107060.	3.8	1
10	On-line compositional measurements of AuAg aerosol nanoparticles generated by spark ablation using optical emission spectroscopy. Journal of Aerosol Science, 2022, 165, 106041.	3.8	8
11	Participation of alkali and sulfur in ammonia combustion chemistry: Investigation for ammonia/solid fuel co-firing applications. Combustion and Flame, 2022, 244, 112236.	5.2	7
12	Temporal temperature measurement on burning biomass pellets using phosphor thermometry and two-line atomic fluorescence. Proceedings of the Combustion Institute, 2021, 38, 3929-3938.	3.9	17
13	Saturation Dependence of Flame Thermometry Using Mid-IR Degenerate Four Wave Mixing. Applied Spectroscopy, 2021, 75, 107-114.	2.2	3
14	Quantitative K-Cl-S chemistry in thermochemical conversion processes using in situ optical diagnostics. Proceedings of the Combustion Institute, 2021, 38, 5219-5227.	3.9	10
15	Mid-infrared laser-induced thermal grating spectroscopy of hot water lines for flame thermometry. Proceedings of the Combustion Institute, 2021, 38, 1885-1893.	3.9	8
16	Particle temperature and potassium release during combustion of single pulverized biomass char particles. Proceedings of the Combustion Institute, 2021, 38, 3949-3958.	3.9	7
17	Experimental Investigation of Plasma Discharge Effect on Swirl Flames at a Scaled Siemens Dry Low Emission Burner. , 2021, , .		0
18	Structure and Laminar Flame Speed of an Ammonia/Methane/Air Premixed Flame under Varying Pressure and Equivalence Ratio. Energy & Fuels, 2021, 35, 7179-7192.	5.1	60

#	Article	IF	CITATIONS
19	Ultraviolet Absorption Cross-Sections of Ammonia at Elevated Temperatures for Nonintrusive Quantitative Detection in Combustion Environments. Applied Spectroscopy, 2021, 75, 1168-1177.	2.2	13
20	Investigation of laserâ€induced grating spectroscopy of O ₂ for accurate temperature measurements towards applications in harsh environments. Journal of Raman Spectroscopy, 2021, 52, 1569-1581.	2.5	2
21	Recent Development in Numerical Simulations and Experimental Studies of Biomass Thermochemical Conversion. Energy & Fuels, 2021, 35, 6940-6963.	5.1	45
22	Clustering-based particle detection method for digital holography to detect the three-dimensional location and in-plane size of particles. Measurement Science and Technology, 2021, 32, 055205.	2.6	27
23	Investigation of turbulent premixed methane/air and hydrogen-enriched methane/air flames in a laboratory-scale gas turbine model combustor. International Journal of Hydrogen Energy, 2021, 46, 13377-13388.	7.1	32
24	Laser-induced thermal grating spectroscopy based on femtosecond laser multi-photon absorption. Scientific Reports, 2021, 11, 9829.	3.3	8
25	Quantification of the size, 3D location and velocity of burning iron particles in premixed methane flames using high-speed digital in-line holography. Combustion and Flame, 2021, 230, 111430.	5.2	22
26	Planar laser-induced photofragmentation fluorescence for quantitative ammonia imaging in combustion environments. Combustion and Flame, 2021, 235, 111687.	5.2	1
27	Stereoscopic high-speed imaging of iron microexplosions and nanoparticle-release. Optics Express, 2021, 29, 34465.	3.4	25
28	Airborne Gold Nanoparticle Detection Using Photoluminescence Excited with a Continuous Wave Laser. Applied Spectroscopy, 2021, 75, 1402-1409.	2.2	4
29	Quantitative imaging of KOH vapor in combustion environments using 266Ânm laser-induced photofragmentation fluorescence. Combustion and Flame, 2021, 235, 111713.	5.2	1
30	Propagation of Darrieus–Landau unstable laminar and turbulent expanding flames. Proceedings of the Combustion Institute, 2021, 38, 2013-2021.	3.9	13
31	Investigation of Hydrogen Content and Dilution Effect on Syngas/Air Premixed Turbulent Flame Using OH Planar Laser-Induced Fluorescence. Processes, 2021, 9, 1894.	2.8	4
32	Simultaneous Quantitative Detection of HCN and C2H2 in Combustion Environment Using TDLAS. Processes, 2021, 9, 2033.	2.8	10
33	Ammonia Measurements with Femtosecond Two-Photon Laser-Induced Fluorescence in Premixed NH ₃ /Air Flames. Energy & Fuels, 2020, 34, 1177-1183.	5.1	7
34	Thermal analysis of a high-power glow discharge in flowing atmospheric air by combining Rayleigh scattering thermometry and numerical simulation. Journal Physics D: Applied Physics, 2020, 53, 085502.	2.8	3
35	Quantitative imaging of potassium release from single burning pulverized biomass char particles. Fuel, 2020, 264, 116866.	6.4	20
36	Structures of inverse jet flames stabilized on a coaxial burner. Energy, 2020, 193, 116757.	8.8	9

#	Article	IF	CITATIONS
37	Flame investigations of a laboratory-scale CECOST swirl burner at atmospheric pressure conditions. Fuel, 2020, 279, 118421.	6.4	13
38	Dual-Laser-Induced Breakdown Thermometry via Sound Speed Measurement: A New Procedure for Improved Spatiotemporal Resolution. Sensors, 2020, 20, 2803.	3.8	4
39	Optical measurements of KOH, KCl and K for quantitative K-Cl chemistry in thermochemical conversion processes. Fuel, 2020, 271, 117643.	6.4	22
40	One-dimensional full-range mixture fraction measurements with femtosecond laser-induced plasma spectroscopy. Experiments in Fluids, 2020, 61, 1.	2.4	2
41	Investigation of Dilution Effect on CH4/Air Premixed Turbulent Flame Using OH and CH2O Planar Laser-Induced Fluorescence. Energies, 2020, 13, 325.	3.1	1
42	Shedding light on the governing mechanisms for insufficient CO and H2 burnout in the presence of potassium, chlorine and sulfur. Fuel, 2020, 273, 117762.	6.4	19
43	Single particle ignition and combustion of pulverized pine wood, wheat straw, rice husk and grape pomace. Proceedings of the Combustion Institute, 2019, 37, 2663-2671.	3.9	33
44	Visualization of instantaneous structure and dynamics of large-scale turbulent flames stabilized by a gliding arc discharge. Proceedings of the Combustion Institute, 2019, 37, 5629-5636.	3.9	42
45	Stabilization of a turbulent premixed flame by a plasma filament. Combustion and Flame, 2019, 208, 79-85.	5.2	25
46	PAHs and soot formation in laminar partially premixed co-flow flames fuelled by PRFs at elevated pressures. Combustion and Flame, 2019, 206, 363-378.	5.2	21
47	Quantitative SO ₂ Detection in Combustion Environments Using Broad Band Ultraviolet Absorption and Laser-Induced Fluorescence. Analytical Chemistry, 2019, 91, 10849-10855.	6.5	24
48	Effects of Flame Temperature on PAHs and Soot Evolution in Partially Premixed and Diffusion Flames of a Diesel Surrogate. Energy & Fuels, 2019, 33, 11821-11829.	5.1	50
49	Numerical simulation of ignition mode and ignition delay time of pulverized biomass particles. Combustion and Flame, 2019, 206, 400-410.	5.2	31
50	Layered structure around an extended gliding discharge column in a methane-nitrogen mixture at high pressure. Applied Physics Letters, 2019, 114, .	3.3	3
51	Development of novel ultrasonic temperature measurement technology for combustion gas as a potential indicator of combustion instability diagnostics. Applied Thermal Engineering, 2019, 159, 113905.	6.0	17
52	Spatially and temporally resolved IR-DFWM measurement of HCN released from gasification of biomass pellets. Proceedings of the Combustion Institute, 2019, 37, 1337-1344.	3.9	13
53	A Review of Femtosecond Laser-Induced Emission Techniques for Combustion and Flow Field Diagnostics. Applied Sciences (Switzerland), 2019, 9, 1906.	2.5	21
54	Infrared Degenerate Four-wave Mixing with Upconversion Detection for Quantitative Gas Sensing. Journal of Visualized Experiments, 2019, , .	0.3	1

#	Article	IF	CITATIONS
55	Ultraviolet Absorption Cross Sections of KOH and KCl for Nonintrusive Species-Specific Quantitative Detection in Hot Flue Gases. Analytical Chemistry, 2019, 91, 4719-4726.	6.5	25
56	Biomass steam gasification in bubbling fluidized bed for higher-H2 syngas: CFD simulation with coarse grain model. International Journal of Hydrogen Energy, 2019, 44, 6448-6460.	7.1	60
57	Instantaneous one-dimensional ammonia measurements with femtosecond two-photon laser-induced fluorescence (fs-TPLIF). International Journal of Hydrogen Energy, 2019, 44, 25740-25745.	7.1	4
58	Mid-Infrared Polarization Spectroscopy Measurements of Species Concentrations and Temperature in a Low-Pressure Flame. Applied Spectroscopy, 2019, 73, 653-664.	2.2	10
59	Structure and burning velocity of turbulent premixed methane/air jet flames in thin-reaction zone and distributed reaction zone regimes. Proceedings of the Combustion Institute, 2019, 37, 2537-2544.	3.9	28
60	Characteristics of a Gliding Arc Discharge Under the Influence of a Laminar Premixed Flame. IEEE Transactions on Plasma Science, 2019, 47, 403-409.	1.3	7
61	Femtosecond-laser electronic-excitation tagging velocimetry using a 267 nm laser. Sensors and Actuators A: Physical, 2019, 287, 138-142.	4.1	5
62	Ammonia measurements with femtosecond laser-induced plasma spectroscopy. Applied Optics, 2019, 58, 1210.	1.8	10
63	Femtosecond laser-induced plasma spectroscopy for combustion diagnostics in premixed ammonia/air flames. Applied Optics, 2019, 58, 7810.	1.8	17
64	Instantaneous one-dimensional equivalence ratio measurements in methane/air mixtures using femtosecond laser-induced plasma spectroscopy. Optics Express, 2019, 27, 2159.	3.4	19
65	Enhancement of femtosecond laser-induced plasma fluorescence using a nanosecond laser. Optics Express, 2019, 27, 5755.	3.4	6
66	Comparison of an InSb Detector and Upconversion Detector for Infrared Polarization Spectroscopy. Applied Spectroscopy, 2018, 72, 793-797.	2.2	9
67	Optical investigation of gas-phase KCl/KOH sulfation in post flame conditions. Fuel, 2018, 224, 461-468.	6.4	31
68	Instantaneous imaging of ozone in a gliding arc discharge using photofragmentation laser-induced fluorescence. Journal Physics D: Applied Physics, 2018, 51, 135203.	2.8	10
69	Laser diagnostics and chemical kinetic analysis of PAHs and soot in co-flow partially premixed flames using diesel surrogate and oxygenated additives of n-butanol and DMF. Combustion and Flame, 2018, 188, 129-141.	5.2	93
70	Spatially Resolved Temperature Measurements Above a Burning Wood Pellet Using Diode Laser-Based Two-Line Atomic Fluorescence. Applied Spectroscopy, 2018, 72, 964-970.	2.2	12
71	Numerical and Experimental Investigation of the CeCOST Swirl Burner. , 2018, , .		5
72	Applicability of Femtosecond Laser Electronic Excitation Tagging in Combustion Flow Field Velocity Measurements. Applied Spectroscopy, 2018, 72, 1807-1813.	2.2	6

#	Article	IF	CITATIONS
73	Re-igniting the afterglow plasma column of an AC powered gliding arc discharge in atmospheric-pressure air. Applied Physics Letters, 2018, 112, .	3.3	11
74	Spectrally Resolved Ultraviolet (UV) Absorption Cross-Sections of Alkali Hydroxides and Chlorides Measured in Hot Flue Gases. Applied Spectroscopy, 2018, 72, 1388-1395.	2.2	18
75	Femtosecond laser-induced cyano chemiluminescence in methane-seeded nitrogen gas flows for near-wall velocimetry. Journal Physics D: Applied Physics, 2018, 51, 295102.	2.8	9
76	Filamentary anemometry using femtosecond laser-extended electric discharge - FALED. Optics Express, 2018, 26, 21132.	3.4	9
77	Temporally and spectrally resolved images of single burning pulverized wheat straw particles. Fuel, 2018, 224, 434-441.	6.4	29
78	Gas Temperature Measurement Using Differential Optical Absorption Spectroscopy (DOAS). Applied Spectroscopy, 2018, 72, 1014-1020.	2.2	9
79	Effect of turbulent flow on an atmospheric-pressure AC powered gliding arc discharge. Journal of Applied Physics, 2018, 123, .	2.5	30
80	Investigations of Microwave Stimulation of Turbulent Flames with Implications to Gas Turbine Combustors. , 2017, , .		0
81	Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure. Physics of Plasmas, 2017, 24, .	1.9	50
82	In-Situ Non-intrusive Diagnostics of Toluene Removal by a Gliding Arc Discharge Using Planar Laser-Induced Fluorescence. Plasma Chemistry and Plasma Processing, 2017, 37, 433-450.	2.4	20
83	Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame – an analysis of flame stretch and flame thickening. Journal of Fluid Mechanics, 2017, 815, 511-536.	3.4	114
84	Quantitative Measurement of Atomic Potassium in Plumes over Burning Solid Fuels Using Infrared-Diode Laser Spectroscopy. Energy & Fuels, 2017, 31, 2831-2837.	5.1	34
85	Effects of CH ₄ Content on NO Formation in One-Dimensional Adiabatic Flames Investigated by Saturated Laser-Induced Fluorescence and CHEMKIN Modeling. Energy & Fuels, 2017, 31, 3154-3163.	5.1	9
86	Multi-species PLIF study of the structures of turbulent premixed methane/air jet flames in the flamelet and thin-reaction zones regimes. Combustion and Flame, 2017, 182, 324-338.	5.2	35
87	Development of an alkali chloride vapour-generating apparatus for calibration of ultraviolet absorption measurements. Review of Scientific Instruments, 2017, 88, 023112.	1.3	8
88	Online Alkali Measurement during Oxy-fuel Combustion. Energy Procedia, 2017, 120, 365-372.	1.8	7
89	Characterization of an AC glow-type gliding arc discharge in atmospheric air with a current-voltage lumped model. Physics of Plasmas, 2017, 24, .	1.9	30
90	A novel multi-jet burner for hot flue gases of wide range of temperatures and compositions for optical diagnostics of solid fuels gasification/combustion. Review of Scientific Instruments, 2017, 88, 045104.	1.3	34

Zhongshan Li

#	Article	IF	CITATIONS
91	Experimental investigations of potassium chemistry in premixed flames. Fuel, 2017, 203, 802-810.	6.4	19
92	Strategy for improved NH 2 detection in combustion environments using an Alexandrite laser. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 184, 235-242.	3.9	17
93	Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium. Applied Physics B: Lasers and Optics, 2017, 123, 278.	2.2	33
94	Laser-Induced Photofragmentation Fluorescence Imaging of Alkali Compounds in Flames. Applied Spectroscopy, 2017, 71, 1289-1299.	2.2	18
95	A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane-air premixed jet flame at high Karlovitz number. Proceedings of the Combustion Institute, 2017, 36, 2045-2053.	3.9	80
96	Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: Scalar distributions and correlations. Combustion and Flame, 2017, 175, 220-236.	5.2	72
97	Strategy of interference-free atomic hydrogen detection in flames using femtosecond multi-photon laser-induced fluorescence. International Journal of Hydrogen Energy, 2017, 42, 3876-3880.	7.1	10
98	Mid-infrared laser-induced thermal grating spectroscopy in flames. Proceedings of the Combustion Institute, 2017, 36, 4515-4523.	3.9	18
99	Strategy for single-shot CH3 imaging in premixed methane/air flames using photofragmentation laser-induced fluorescence. Proceedings of the Combustion Institute, 2017, 36, 4487-4495.	3.9	16
100	Characterization of the reaction zone structures in a laboratory combustor using optical diagnostics: from flame to flameless combustion. Proceedings of the Combustion Institute, 2017, 36, 4305-4312.	3.9	23
101	Translational, rotational, vibrational and electron temperatures of a gliding arc discharge. Optics Express, 2017, 25, 20243.	3.4	77
102	Comprehensive CO detection in flames using femtosecond two-photon laser-induced fluorescence. Optics Express, 2017, 25, 25809.	3.4	14
103	Experimental Study on Bluff-Body Stabilized Premixed Flame with a Central Air/Fuel Jet. Energies, 2017, 10, 2011.	3.1	6
104	Setup for microwave stimulation of a turbulent low-swirl flame. Journal Physics D: Applied Physics, 2016, 49, 185601.	2.8	8
105	Misalignment Effects in Laser-Induced Grating Experiments. Applied Spectroscopy, 2016, 70, 2025-2028.	2.2	3
106	Strategies for Quantitative Planar Laser-Induced Fluorescence of NH Radicals in Flames. Combustion Science and Technology, 2016, 188, 529-541.	2.3	18
107	Mid-Infrared Pumped Laser-Induced Thermal Grating Spectroscopy for Detection of Acetylene in the Visible Spectral Range. Applied Spectroscopy, 2016, 70, 1034-1043.	2.2	15
108	Temperature imaging in low-pressure flames using diode laser two-line atomic fluorescence employing a novel indium seeding technique. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	17

#	Article	IF	CITATIONS
109	Investigation of roâ€vibrational spectra of small hydrocarbons at elevated temperatures using infrared degenerate fourâ€wave mixing. Journal of Raman Spectroscopy, 2016, 47, 1130-1139.	2.5	8
110	Nonâ€intrusive, <i>in situ</i> detection of ammonia in hot gas flows with midâ€infrared degenerate fourâ€wave mixing at 2.3 µm. Journal of Raman Spectroscopy, 2016, 47, 1140-1148.	2.5	7
111	Investigation of NO formation in premixed adiabatic laminar flames of H2/CO syngas and air by saturated laser-induced fluorescence and kinetic modeling. Combustion and Flame, 2016, 164, 283-293.	5.2	28
112	Structure of premixed ammoniaÂ+Âair flames at atmospheric pressure: Laser diagnostics and kinetic modeling. Combustion and Flame, 2016, 163, 370-381.	5.2	83
113	Gas-Phase and Combustion Diagnostics by Infrared Laser-Induced Grating Spectroscopy. , 2016, , .		0
114	Nonâ€intrusive <i>in situ</i> detection of methyl chloride in hot gas flows using infrared degenerate fourâ€wave mixing. Journal of Raman Spectroscopy, 2015, 46, 695-701.	2.5	13
115	Methyl Radical Imaging in Methane–Air Flames Using Laser Photofragmentation-Induced Fluorescence. Applied Spectroscopy, 2015, 69, 1152-1156.	2.2	12
116	Vapor phase tri-methyl-indium seeding system suitable for high temperature spectroscopy and thermometry. Review of Scientific Instruments, 2015, 86, 093107.	1.3	10
117	Single-shot, planar infrared imaging in flames using polarization spectroscopy. Optics Express, 2015, 23, 30414.	3.4	4
118	Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime. Proceedings of the Combustion Institute, 2015, 35, 1409-1416.	3.9	83
119	Development and application of CN PLIF for single-shot imaging in turbulent flames. Combustion and Flame, 2015, 162, 368-374.	5.2	11
120	Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge. Applied Physics Letters, 2015, 106, .	3.3	53
121	Investigation of formaldehyde enhancement by ozone addition in CH4/air premixed flames. Combustion and Flame, 2015, 162, 1284-1293.	5.2	22
122	Analysis of in-cylinder H2O2 and HO2 distributions in an HCCI engine – Comparison of laser-diagnostic results with CFD and SRM simulations. Combustion and Flame, 2015, 162, 3131-3139.	5.2	25
123	Experimental apparatus with full optical access for combustion experiments with laminar flames from a single circular nozzle at elevated pressures. Review of Scientific Instruments, 2015, 86, 035115.	1.3	12
124	Observation of gliding arc surface treatment. Surface Engineering, 2015, 31, 282-288.	2.2	19
125	Visualization of multi-regime turbulent combustion in swirl-stabilized lean premixed flames. Combustion and Flame, 2015, 162, 2954-2958.	5.2	31
126	Numerical and experimental study of flame propagation and quenching of lean premixed turbulent low swirl flames at different Reynolds numbers. Combustion and Flame, 2015, 162, 2582-2591.	5.2	13

#	Article	IF	CITATIONS
127	Distributed reactions in highly turbulent premixed methane/air flames. Combustion and Flame, 2015, 162, 2937-2953.	5.2	117
128	Impact of plasma dynamics on equivalence ratio measurements by laser-induced breakdown spectroscopy. Applied Optics, 2015, 54, 4221.	2.1	15
129	Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air. Applied Physics Letters, 2014, 105, .	3.3	58
130	Upconversion enhanced degenerate four-wave mixing in the mid-infrared for sensitive detection of acetylene in gas flows. Proceedings of SPIE, 2014, , .	0.8	1
131	Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing. Optics Letters, 2014, 39, 5321.	3.3	47
132	Spectroscopic characterization of aluminum plasma using laser-induced breakdown spectroscopy. Optik, 2014, 125, 2851-2855.	2.9	14
133	Stability of alternating current gliding arcs. European Physical Journal D, 2014, 68, 1.	1.3	16
134	Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements. Journal Physics D: Applied Physics, 2014, 47, 295203.	2.8	72
135	Strategy for PLIF single-shot HCO imaging in turbulent methane/air flames. Combustion and Flame, 2014, 161, 1566-1574.	5.2	37
136	Laser-Induced Fluorescence Detection of Hot Molecular Oxygen in Flames Using an Alexandrite Laser. Applied Spectroscopy, 2014, 68, 1266-1273.	2.2	2
137	Effect of Partial Premixing on Stabilization and Local Extinction of Turbulent Methane/Air Flames. Flow, Turbulence and Combustion, 2013, 90, 269-284.	2.6	17
138	Laser-induced breakdown spectroscopy in a partially premixed turbulent jet flame. Measurement Science and Technology, 2013, 24, 075205.	2.6	18
139	Planar Laser-Induced Fluorescence Diagnostics for Spatiotemporal OH Evolution in Pulsed Corona Discharge. IEEE Transactions on Plasma Science, 2013, 41, 485-493.	1.3	7
140	Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence. Proceedings of the Combustion Institute, 2013, 34, 1475-1482.	3.9	72
141	Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester. Journal Physics D: Applied Physics, 2013, 46, 135203.	2.8	38
142	Post-flame gas-phase sulfation of potassium chloride. Combustion and Flame, 2013, 160, 959-969.	5.2	72
143	Measurements of NO concentration in NH3-doped CH4+air flames using saturated laser-induced fluorescence and probe sampling. Combustion and Flame, 2013, 160, 40-46.	5.2	50
144	In-situ Measurement of Sodium and Potassium Release during Oxy-Fuel Combustion of Lignite using Laser-Induced Breakdown Spectroscopy: Effects of O ₂ and CO ₂ Concentration. Energy & Fuels, 2013, 27, 1123-1130.	5.1	97

#	Article	IF	CITATIONS
145	Optical diagnostics of a gliding arc. Optics Express, 2013, 21, 6028.	3.4	75
146	Experiments on plasma assisted combustion using a dielectric barrier surface discharge. , 2013, , .		0
147	Experiments on plasma assisted combustion using a dielectric barrier surface discharge. , 2013, , .		0
148	Atmospheric Pressure Acetylene Detection by UV Photo-Fragmentation and Induced C ₂ Emission. Applied Spectroscopy, 2013, 67, 66-72.	2.2	4
149	Anin situset up for the detection of CO2from catalytic CO oxidation by using planar laser-induced fluorescence. Review of Scientific Instruments, 2012, 83, 053104.	1.3	35
150	Laser-induced breakdown flame thermometry. Combustion and Flame, 2012, 159, 3576-3582.	5.2	63
151	PLIF diagnostics of NO oxidization and OH consumption in pulsed corona discharge. Fuel, 2012, 102, 729-736.	6.4	10
152	Investigation of laminar flame speeds of typical syngas using laser based Bunsen method and kinetic simulation. Fuel, 2012, 95, 206-213.	6.4	73
153	Laser-induced Breakdown Spectroscopy: A Simple but Versatile Tool for Combustion Diagnostics. , 2012, , .		2
154	High-Speed Imaging of Fuel/OH Distributions in a Gas Turbine Pilot Burner at Elevated Pressure. , 2011, ,		1
155	Sodium and Potassium Released from Burning Particles of Brown Coal and Pine Wood in a Laminar Premixed Methane Flame Using Quantitative Laser-Induced Breakdown Spectroscopy. Applied Spectroscopy, 2011, 65, 684-691.	2.2	68
156	Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics. Applied Physics B: Lasers and Optics, 2011, 103, 229-236.	2.2	56
157	Premixed jet flame characteristics of syngas using OH planar laser induced fluorescence. Science Bulletin, 2011, 56, 2862-2868.	1.7	13
158	Flame temperature diagnostics with water lines using midâ€infrared degenerate fourâ€wave mixing. Journal of Raman Spectroscopy, 2011, 42, 1828-1835.	2.5	18
159	Midâ€infrared polarization spectroscopy: A tool for <i>in situ</i> measurements of toxic gases in smokeâ€laden environments. Fire and Materials, 2011, 35, 527-537.	2.0	13
160	Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques. Proceedings of the Combustion Institute, 2011, 33, 69-97.	3.9	133
161	Detection of C2H2 and HCl using mid-infrared degenerate four-wave mixing with stable beam alignment: towards practical in situ sensing of trace molecular species. Applied Physics B: Lasers and Optics, 2010, 98, 593-600.	2.2	30
162	Quantitative C2H2 measurements in sooty flames usingÂmid-infrared polarization spectroscopy. Applied Physics B: Lasers and Optics, 2010, 101, 423-432.	2.2	25

#	Article	IF	CITATIONS
163	Laser-induced breakdown spectroscopy in gases using ungated detection in combination with polarization filtering and online background correction. Measurement Science and Technology, 2010, 21, 065303.	2.6	29
164	Detection of Flame Radicals Using Light-Emitting Diodes. Applied Spectroscopy, 2010, 64, 1330-1334.	2.2	11
165	OHâ€thermometry using laser polarization spectroscopy and laserâ€induced fluorescence spectroscopy in the OH Aâ€X (1,0) band. Journal of Raman Spectroscopy, 2009, 40, 828-835.	2.5	19
166	Optical emission enhancement of laser-produced copper plasma under a steady magnetic field. Applied Optics, 2009, 48, B105.	2.1	59
167	Visualization of Biomass Pyrolysis and Temperature Imaging in a Heated-Grid Reactor. Energy & Fuels, 2009, 23, 993-1006.	5.1	14
168	Spatially resolved trace detection of HCl in flames with mid-infrared polarization spectroscopy. Optics Letters, 2008, 33, 1836.	3.3	25
169	Two-Dimensional Temperature Measurements in Flames Using Filtered Rayleigh Scattering at 254 nm. Applied Spectroscopy, 2008, 62, 778-783.	2.2	26
170	Detection of HCl in a premixed H2/O2/Ar flame seeded with CHCl3 using mid-IR polarization spectroscopy. , 2008, , .		0
171	Midinfrared polarization spectroscopy of OH and hot water in low pressure lean premixed flames. Journal of Chemical Physics, 2007, 127, 084310.	3.0	30
172	Single-shot imaging of ground-state hydrogen atoms with a nonlinear laser spectroscopic technique. Optics Letters, 2007, 32, 1569.	3.3	10
173	Application of Two-Photon Laser-Induced Fluorescence for Single-Shot Visualization of Carbon Monoxide in a Spark Ignited Engine. Applied Spectroscopy, 2007, 61, 1-5.	2.2	28
174	Simultaneous laser-induced fluorescence and sub-Doppler polarization spectroscopy of the CH radical. Optics Communications, 2007, 270, 347-352.	2.1	28
175	High resolution polarization spectroscopy and laser induced fluorescence of CO2 around 2î¼m. European Physical Journal D, 2007, 42, 41-47.	1.3	20
176	Visible-to-ultraviolet upconversion in Pr3+:Y2SiO5 crystals. Chemical Physics, 2006, 325, 563-566.	1.9	52
177	Strategies for Formaldehyde Detection in Flames and Engines Using a Single-Mode Nd:YAG/OPO Laser System. Applied Spectroscopy, 2005, 59, 763-768.	2.2	17
178	Applications of a single-longitudinal-mode alexandrite laser for diagnostics of parameters of combustion interest. Review of Scientific Instruments, 2004, 75, 3208-3215.	1.3	30
179	Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2003, 59, 3347-3356.	3.9	113
180	Core-polarization effects and radiative lifetime measurements in Pr III. Physical Review A, 2001, 64, .	2.5	34

Zhongshan Li

#	Article	IF	CITATIONS
181	New f-values in neutral lead obtained by time-resolved laser spectroscopy, and astrophysical applications. Monthly Notices of the Royal Astronomical Society, 2000, 312, 116-122.	4.4	56
182	Lifetime measurements in Ce I, Ce II, and Ce III using time-resolved laser spectroscopy with application to stellar abundance determinations of cerium. Physical Review A, 2000, 62, .	2.5	36
183	Polycrystalline germanium dioxide hollow-core fibers and their performance. Infrared Physics and Technology, 1997, 38, 193-199.	2.9	9
184	Plasma Effects on Swirl Flames in a Scaled Dry Low Emission Burner. AIAA Journal, 0, , 1-8.	2.6	2
185	Non-thermal gliding arc discharge assisted turbulent combustion (up to 80 kW) at extended conditions: phenomenological analysis. Combustion Science and Technology, 0, , 1-16.	2.3	1