
Xiao-Min Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2608347/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Enhanced Johnson–Cook Model for Hot Compressed A356 Aluminum Alloy. Advanced Engineering Materials, 2021, 23, .	1.6	30
2	A Strain-Compensated Constitutive Model for Describing the Hot Compressive Deformation Behaviors of an Aged Inconel 718 Superalloy. High Temperature Materials and Processes, 2019, 38, 436-443.	0.6	10
3	A precise BP neural network-based online model predictive control strategy for die forging hydraulic press machine. Neural Computing and Applications, 2018, 29, 585-596.	3.2	66
4	Influence of Stressâ€Aging Processing on Precipitates and Mechanical Properties of a 7075 Aluminum Alloy. Advanced Engineering Materials, 2018, 20, 1700583.	1.6	15
5	Influences of Initial Microstructures on Portevin‣e Chatelier Effect and Mechanical Properties of a Ni–Fe–Cr–Base Superalloy. Advanced Engineering Materials, 2018, 20, 1800234.	1.6	19
6	Microstructural evolution and constitutive models to predict hot deformation behaviors of a nickel-based superalloy. Vacuum, 2017, 137, 104-114.	1.6	131
7	A comparative study on phenomenon and deep belief network models for hot deformation behavior of an Al–Zn–Mg–Cu alloy. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	47
8	A new method to predict the metadynamic recrystallization behavior in a typical nickel-based superalloy. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	37
9	A novel unified dislocation density-based model for hot deformation behavior of a nickel-based superalloy under dynamic recrystallization conditions. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	56
10	Improved dislocation density-based models for describing hot deformation behaviors of a Ni-based superalloy. Journal of Materials Research, 2016, 31, 2415-2429.	1.2	32
11	A unified physically based constitutive model for describing strain hardening effect and dynamic recovery behavior of a Ni-based superalloy. Journal of Materials Research, 2015, 30, 3784-3794.	1.2	74
12	Cyclic Plasticity Constitutive Model for Uniaxial Ratcheting Behavior of AZ31B Magnesium Alloy. Journal of Materials Engineering and Performance, 2015, 24, 1820-1833.	1.2	26
13	Effects of initial δ phase on flow behaviors and dynamically recrystallized grain size of a nickel-based superalloy. Advances in Materials and Processing Technologies, 2015, 1, 84-97.	0.8	1
14	A physically-based constitutive model for a typical nickel-based superalloy. Computational Materials Science, 2014, 83, 282-289.	1.4	217
15	A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Materials & Design, 2011, 32, 1733-1759.	5.1	1,094
16	A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6980-6986.	2.6	295