Huabo Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/260800/publications.pdf

Version: 2024-02-01

430874 454955 33 938 18 30 h-index citations g-index papers 33 33 33 1200 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ultraâ€stretchable, fast selfâ€healing, conductive hydrogels for writing circuits and magnetic sensors. Polymer International, 2022, 71, 837-846.	3.1	5
2	A micropore-dominant N,P,S-codoped porous carbon originating from hydrogel for high-performance supercapacitors mediated by phytic acid. Microporous and Mesoporous Materials, 2021, 316, 110951.	4.4	21
3	Polyaniline–poly(styrene sulfonate) hydrogelÂderived hierarchically porous N, S-codoped carbon for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 8916-8931.	2.2	10
4	Reinforced polyaniline-dodecyl benzene sulfonate hydrogel with well-aligned fibrous morphology as durable electrode materials for Zn-ion battery. Synthetic Metals, 2021, 274, 116721.	3.9	13
5	Synchronously Strengthen and Toughen Polypropylene Using Tartaric Acid-Modified Nano-CaCO3. Nanomaterials, 2021, 11, 2493.	4.1	7
6	Graphene oxide/polypyrrole/polyaniline composite hydrogel synthesized by vapor-liquid interfacial method for supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127125.	4.7	30
7	Elastic polypyrrole hydrogels reinforced by TEMPO-oxidized cellulose for supercapacitors. Synthetic Metals, 2021, 282, 116952.	3.9	7
8	Facile fabrication of MnO ₂ -embedded 3-D porous polyaniline composite hydrogel for supercapacitor electrode with high loading. High Performance Polymers, 2020, 32, 286-295.	1.8	11
9	Achieving mesoporous MnO2@polyaniline nanohybrids via a gas/liquid interfacial reaction between aniline and KMnO4 aqueous solution towards Zn-MnO2 battery. Synthetic Metals, 2020, 266, 116438.	3.9	20
10	Highly Stretchable, Fast Selfâ€Healing, Responsive Conductive Hydrogels for Supercapacitor Electrode and Motion Sensor. Macromolecular Materials and Engineering, 2020, 305, 2000018.	3.6	42
11	Fabrication of poly(vinyl alcohol)–graphene oxide–polypyrrole composite hydrogel for elastic supercapacitors. Journal of Materials Science, 2020, 55, 11779-11791.	3.7	36
12	Facile Synthesis of N,S-Codoped Hierarchically Porous Carbon with High Volumetric Pseudocapacitance. ACS Sustainable Chemistry and Engineering, 2019, 7, 16710-16719.	6.7	45
13	Polypyrrole wrapped graphene/TiO2 composites hydrogels for high performance supercapacitors. Materials Research Express, 2019, 6, 085044.	1.6	11
14	High-performance Si flexible anode with rGO substrate and Ca2+ crosslinked sodium alginate binder for lithium ion battery. Synthetic Metals, 2019, 247, 212-218.	3.9	22
15	Facile Assembly of Polyaniline/Graphene Oxide Composite Hydrogels as Adsorbent for Cr(VI) Removal. Polymer Composites, 2019, 40, E1777.	4.6	42
16	High-performance poly(vinyl alcohol)–chitosan sponge modified with graphene oxide. Polymer Bulletin, 2019, 76, 3059-3071.	3.3	7
17	Interfacial fabrication of polypyrrole/sulfonated reduced graphene oxide nanocomposites for electrochemical capacitors. Polymer Composites, 2018, 39, E378.	4.6	12
18	Fabrication of poly(N-methylpyrrole) nanotubes for detection of dopamine. Polymer Bulletin, 2018, 75, 2357-2368.	3.3	8

#	Article	IF	CITATIONS
19	Facile synthesis of nitrogen-doped graphene aerogels for electrochemical detection of dopamine. Solid State Sciences, 2018, 86, 6-11.	3.2	41
20	Morphology-controlled fabrication of polypyrrole hydrogel for solid-state supercapacitor. Journal of Power Sources, 2018, 407, 105-111.	7.8	109
21	One-Step Synthesis of Graphene Oxide/Polypyrrole/MnO ₂ Ternary Nanocomposites with an Improved Electrochemical Capacitance. Journal of Nanoscience and Nanotechnology, 2017, 17, 4356-4361.	0.9	15
22	Electrochemical synthesis of graphene/polypyrrole nanotube composites for multifunctional applications. Synthetic Metals, 2017, 227, 100-105.	3.9	62
23	3D Nanostructured Polypyrrole/Sodium Alginate Conducting Hydrogel from self-assembly with High Supercapacitor Performance. Journal of Macromolecular Science - Physics, 2017, 56, 532-540.	1.0	18
24	Reinforced polyaniline/polyvinyl alcohol conducting hydrogel from a freezing–thawing method as self-supported electrode for supercapacitors. Journal of Materials Science, 2016, 51, 8728-8736.	3.7	75
25	Synthesis of hierarchical reduced graphene oxide/SnO 2 /polypyrrole ternary composites with high electrochemical performance. Materials Research Bulletin, 2016, 80, 303-308.	5.2	28
26	Facile fabrication of elastic conducting polypyrrole nanotube aerogels. Synthetic Metals, 2016, 218, 50-55.	3.9	29
27	Conducting hydrogels originating from high-pressure induced gelation of poly(vinyl alcohol) and in-situ polymerization of aniline. Synthetic Metals, 2016, 221, 15-18.	3.9	9
28	Facile assembly of polypyrrole/Prussian blue aerogels for hydrogen peroxide reduction. Synthetic Metals, 2016, 213, 73-77.	3.9	22
29	Facile preparation of halloysite/polyaniline nanocomposites via in situ polymerization and layer-by-layer assembly with good supercapacitor performance. Journal of Materials Science, 2016, 51, 4047-4054.	3.7	56
30	Effect of 1-hydroxyethane-1, 1-diphosphonic acid on the hydration of ordinary Portland cement. Journal of Sustainable Cement-Based Materials, 2014, 3, 47-60.	3.1	0
31	Conducting Hydrogels of Tetraaniline-g-poly(vinyl alcohol) in Situ Reinforced by Supramolecular Nanofibers. ACS Applied Materials & Samp; Interfaces, 2014, 6, 1595-1600.	8.0	29
32	Reinforced conducting hydrogels prepared from the in situ polymerization of aniline in an aqueous solution of sodium alginate. Journal of Materials Chemistry A, 2014, 2, 16516-16522.	10.3	93
33	Effect of temperature on self-assembly/disassembly transition of dialkylurea supramolecular gels at high pressure. RSC Advances, 2013, 3, 11854.	3.6	3