
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2607714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sublethal Irradiation of Human Tumor Cells Modulates Phenotype Resulting in Enhanced Killing by Cytotoxic T Lymphocytes. Cancer Research, 2004, 64, 7985-7994.	0.9	489
2	IL-8 Signaling Plays a Critical Role in the Epithelial–Mesenchymal Transition of Human Carcinoma Cells. Cancer Research, 2011, 71, 5296-5306.	0.9	346
3	The IL-8/IL-8R Axis: A Double Agent in Tumor Immune Resistance. Vaccines, 2016, 4, 22.	4.4	286
4	The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells. Journal of Clinical Investigation, 2010, 120, 533-544.	8.2	238
5	Chemotherapyâ€induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. International Journal of Cancer, 2013, 133, 624-636.	5.1	225
6	Pilot Study of Vaccination with Recombinant CEA-MUC-1-TRICOM Poxviral-Based Vaccines in Patients with Metastatic Carcinoma. Clinical Cancer Research, 2008, 14, 3060-3069.	7.0	208
7	Homeoboxes in plant development. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1442, 1-19.	2.4	192
8	IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood, 2007, 110, 3192-3201.	1.4	177
9	Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy. JCI Insight, 2019, 4, .	5.0	168
10	Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: status of preclinical and clinical advances. , 2020, 8, e000433.		166
11	Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. , 2019, 7, 240.		162
12	The Human T-Box Mesodermal Transcription Factor Brachyury Is a Candidate Target for T-Cell–Mediated Cancer Immunotherapy. Clinical Cancer Research, 2007, 13, 2471-2478.	7.0	150
13	Influence of IL-8 on the epithelial–mesenchymal transition and the tumor microenvironment. Future Oncology, 2012, 8, 713-722.	2.4	138
14	A novel bifunctional anti-PD-L1/TGF-β Trap fusion protein (M7824) efficiently reverts mesenchymalization of human lung cancer cells. OncoImmunology, 2017, 6, e1349589.	4.6	137
15	Epithelial-mesenchymal transition and inflammation at the site of the primary tumor. Seminars in Cancer Biology, 2017, 47, 177-184.	9.6	128
16	Interleukin-8: A chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression. , 2021, 219, 107692.		128
17	Nuclear Brachyury Expression Is Consistent in Chordoma, Common in Germ Cell Tumors and Small Cell Carcinomas, and Rare in Other Carcinomas and Sarcomas. American Journal of Surgical Pathology, 2015, 39, 1305-1312.	3.7	122
18	Brachyury, a Driver of the Epithelial–Mesenchymal Transition, Is Overexpressed in Human Lung Tumors: An Opportunity for Novel Interventions against Lung Cancer. Clinical Cancer Research, 2012, 18, 3868-3879.	7.0	112

#	Article	IF	CITATIONS
19	Neutralization of IL-8 decreases tumor PMN-MDSCs and reduces mesenchymalization of claudin-low triple-negative breast cancer. JCI Insight, 2017, 2, .	5.0	112
20	Tumor Plasticity and Resistance to Immunotherapy. Trends in Cancer, 2020, 6, 432-441.	7.4	88
21	Combination Chemotherapy and Radiation of Human Squamous Cell Carcinoma of the Head and Neck Augments CTL-Mediated Lysis. Clinical Cancer Research, 2006, 12, 1897-1905.	7.0	85
22	WEE1 Inhibition Alleviates Resistance to Immune Attack of Tumor Cells Undergoing Epithelial–Mesenchymal Transition. Cancer Research, 2014, 74, 2510-2519.	0.9	71
23	The embryonic transcription factor Brachyury blocks cell cycle progression and mediates tumor resistance to conventional antitumor therapies. Cell Death and Disease, 2013, 4, e682-e682.	6.3	70
24	A monomer–dimer equilibrium modulates the interaction of the sunflower homeodomain leucine-zipper protein Hahb-4 with DNA. Biochemical Journal, 1999, 341, 81-87.	3.7	68
25	Therapeutic Cancer Vaccines. Advances in Cancer Research, 2014, 121, 67-124.	5.0	68
26	Overexpression of the EMT Driver Brachyury in Breast Carcinomas: Association With Poor Prognosis. Journal of the National Cancer Institute, 2014, 106, .	6.3	65
27	Cancer Vaccines: Preclinical Studies and Novel Strategies. Advances in Cancer Research, 2006, 95, 115-145.	5.0	64
28	Immunological targeting of tumor cells undergoing an epithelial-mesenchymal transition via a recombinant brachyury-yeast vaccine. Oncotarget, 2013, 4, 1777-1790.	1.8	63
29	A Human Cytotoxic T-Lymphocyte Epitope and Its Agonist Epitope from the Nonvariable Number of Tandem Repeat Sequence of MUC-1. Clinical Cancer Research, 2004, 10, 2139-2149.	7.0	60
30	Brachyury-YAP Regulatory Axis Drives Stemness and Growth in Cancer. Cell Reports, 2017, 21, 495-507.	6.4	59
31	An Autocrine Loop between TGF-β1 and the Transcription Factor Brachyury Controls the Transition of Human Carcinoma Cells into a Mesenchymal Phenotype. Molecular Cancer Therapeutics, 2013, 12, 1805-1815.	4.1	57
32	Identification of Novel Human CTL Epitopes and Their Agonist Epitopes of Mesothelin. Clinical Cancer Research, 2005, 11, 6342-6351.	7.0	56
33	Simultaneous inhibition of CXCR1/2, TGF-β, and PD-L1 remodels the tumor and its microenvironment to drive antitumor immunity. , 2020, 8, e000326.		54
34	MUC1 upregulation promotes immune resistance in tumor cells undergoing brachyury-mediated epithelial-mesenchymal transition. OncoImmunology, 2016, 5, e1117738.	4.6	53
35	A monomer‒dimer equilibrium modulates the interaction of the sunflower homeodomain leucine-zipper protein Hahb-4 with DNA. Biochemical Journal, 1999, 341, 81.	3.7	51
36	Phase I Study of a Poxviral TRICOM-Based Vaccine Directed Against the Transcription Factor Brachyury. Clinical Cancer Research, 2017, 23, 6833-6845.	7.0	51

#	Article	IF	CITATIONS
37	Remodeling the tumor microenvironment via blockade of LAIR-1 and TGF-β signaling enables PD-L1–mediated tumor eradication. Journal of Clinical Investigation, 2022, 132, .	8.2	50
38	Targeting Estrogen Receptor Signaling with Fulvestrant Enhances Immune and Chemotherapy-Mediated Cytotoxicity of Human Lung Cancer. Clinical Cancer Research, 2016, 22, 6204-6216.	7.0	49
39	Cancer Vaccines Targeting the Epithelial-Mesenchymal Transition: Tissue Distribution of Brachyury and Other Drivers of the Mesenchymal-Like Phenotype of Carcinomas. Seminars in Oncology, 2012, 39, 358-366.	2.2	48
40	IL-8 signaling is involved in resistance of lung carcinoma cells to erlotinib. Oncotarget, 0, 7, 42031-42044.	1.8	48
41	A Phase I Dose-Escalation Trial of BN-CV301, a Recombinant Poxviral Vaccine Targeting MUC1 and CEA with Costimulatory Molecules. Clinical Cancer Research, 2019, 25, 4933-4944.	7.0	45
42	Analyses of Recombinant Vaccinia and Fowlpox Vaccine Vectors Expressing Transgenes for Two Human Tumor Antigens and Three Human Costimulatory Molecules. Clinical Cancer Research, 2005, 11, 1597-1607.	7.0	44
43	Vaccines against Human Carcinomas: Strategies to Improve Antitumor Immune Responses. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-12.	3.0	41
44	A Phase I Trial Using a Multitargeted Recombinant Adenovirus 5 (CEA/MUC1/Brachyury)-Based Immunotherapy Vaccine Regimen in Patients with Advanced Cancer. Oncologist, 2020, 25, 479-e899.	3.7	39
45	Short-term EGFR blockade enhances immune-mediated cytotoxicity of EGFR mutant lung cancer cells: rationale for combination therapies. Cell Death and Disease, 2016, 7, e2380-e2380.	6.3	38
46	Positively charged residues at the N-terminal arm of the homeodomain are required for efficient DNA binding by homeodomain-leucine zipper proteins11Edited by M. Yaniv. Journal of Molecular Biology, 2001, 308, 39-47.	4.2	37
47	Potential approach to immunotherapy of chronic lymphocytic leukemia (CLL): enhanced immunogenicity of CLL cells via infection with vectors encoding for multiple costimulatory molecules. Blood, 2005, 106, 3515-3523.	1.4	32
48	The generation and analyses of a novel combination of recombinant adenovirus vaccines targeting three tumor antigens as an immunotherapeutic. Oncotarget, 2015, 6, 31344-31359.	1.8	32
49	Human B cells that hyperexpress a triad of costimulatory molecules via avipox-vector infection: an alternative source of efficient antigen-presenting cells. Blood, 2004, 104, 192-199.	1.4	31
50	Strategies to target molecules that control the acquisition of a mesenchymal-like phenotype by carcinoma cells. Experimental Biology and Medicine, 2011, 236, 537-545.	2.4	31
51	Vaccine-Mediated Immunotherapy Directed against a Transcription Factor Driving the Metastatic Process. Cancer Research, 2014, 74, 1945-1957.	0.9	31
52	Brachyury, a vaccine target, is overexpressed in triple-negative breast cancer. Endocrine-Related Cancer, 2016, 23, 783-796.	3.1	31
53	New gene expressed in prostate: a potential target for T cell-mediated prostate cancer immunotherapy. Cancer Immunology, Immunotherapy, 2010, 59, 63-71.	4.2	28
54	An immunotherapeutic intervention against tumor progression. Oncolmmunology, 2014, 3, e27220.	4.6	27

#	Article	IF	CITATIONS
55	Phase I study of a multitargeted recombinant Ad5 PSA/MUC-1/brachyury-based immunotherapy vaccine in patients with metastatic castration-resistant prostate cancer (mCRPC). , 2021, 9, e002374.		25
56	Aberrant expression of the embryonic transcription factor brachyury in human tumors detected with a novel rabbit monoclonal antibody. Oncotarget, 2015, 6, 4853-4862.	1.8	24
57	Identification and characterization of a cytotoxic T-lymphocyte agonist epitope of brachyury, a transcription factor involved in epithelial to mesenchymal transition and metastasis. Cancer Immunology, Immunotherapy, 2014, 63, 1307-1317.	4.2	23
58	Expression of Sunflower Homeodomain Containing Proteins inEscherichia coli:Purification and Functional Studies. Protein Expression and Purification, 1998, 13, 97-103.	1.3	22
59	Efficient Tumor Clearance and Diversified Immunity through Neoepitope Vaccines and Combinatorial Immunotherapy. Cancer Immunology Research, 2019, 7, 1359-1370.	3.4	22
60	Development of Cancer Vaccines Targeting Brachyury, a Transcription Factor Associated with Tumor Epithelial-Mesenchymal Transition. Cells Tissues Organs, 2017, 203, 128-138.	2.3	20
61	Identification of cytotoxic T-lymphocyte epitope(s) and its agonist epitope(s) of a novel target for vaccine therapy (PAGE4). International Journal of Cancer, 2007, 121, 595-605.	5.1	19
62	The Use of a Humanized NSG-β2mâ^'/â	2.8	19
63	Phase 1 open-label trial of intravenous administration of MVA-BN-brachyury-TRICOM vaccine in patients with advanced cancer. , 2021, 9, e003238.		19
64	Chronic lymphocytic leukemia (CLL) cells genetically modified to express B7-1, ICAM-1, and LFA-3 confer APC capacity to T cells from CLL patients. Cancer Immunology, Immunotherapy, 2009, 58, 955-965.	4.2	17
65	Identification and characterization of enhancer agonist human cytotoxic T-cell epitopes of the human papillomavirus type 16 (HPV16) E6/E7. Vaccine, 2017, 35, 2605-2611.	3.8	17
66	Phase I Trial of a Modified Vaccinia Ankara Priming Vaccine Followed by a Fowlpox Virus Boosting Vaccine Modified to Express Brachyury and Costimulatory Molecules in Advanced Solid Tumors. Oncologist, 2020, 25, 560.	3.7	17
67	Phase I trial of BMS-986253, an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors Journal of Clinical Oncology, 2018, 36, 3091-3091.	1.6	16
68	Enhanced expression of lymphotactin by CD8+ T cells is selectively induced by enhancer agonist peptides of tumor-associated antigens. Cytokine, 2003, 24, 128-142.	3.2	14
69	Comparative analysis of MVA-CD40L and MVA-TRICOM vectors for enhancing the immunogenicity of chronic lymphocytic leukemia (CLL) cells. Leukemia Research, 2010, 34, 1351-1357.	0.8	14
70	Pharmacological and immunological targeting of tumor mesenchymalization. , 2017, 170, 212-225.		14
71	Immune Targeting of Tumor Epithelial–Mesenchymal Transition via Brachyury-Based Vaccines. Advances in Cancer Research, 2015, 128, 69-93.	5.0	12
72	Improving the Odds in Advanced Breast Cancer With Combination Immunotherapy: Stepwise Addition of Vaccine, Immune Checkpoint Inhibitor, Chemotherapy, and HDAC Inhibitor in Advanced Stage Breast Cancer. Frontiers in Oncology, 2020, 10, 581801.	2.8	11

#	Article	IF	CITATIONS
73	A novel type of dimerization motif, related to leucine zippers, is present in plant homeodomain proteins. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1352, 203-212.	2.4	9
74	Vaccine Increases the Diversity and Activation of Intratumoral T Cells in the Context of Combination Immunotherapy. Cancers, 2021, 13, 968.	3.7	9
75	T Cell–Mediated Antitumor Immunity Cooperatively Induced By TGFβR1 Antagonism and Gemcitabine Counteracts Reformation of the Stromal Barrier in Pancreatic Cancer. Molecular Cancer Therapeutics, 2021, 20, 1926-1940.	4.1	9
76	Differential gene expression profiles in a human T-cell line stimulated with a tumor-associated self-peptide versus an enhancer agonist peptide. Clinical Cancer Research, 2003, 9, 1616-27.	7.0	9
77	Loss of the Cyclin-Dependent Kinase Inhibitor 1 in the Context of Brachyury-Mediated Phenotypic Plasticity Drives Tumor Resistance to Immune Attack. Frontiers in Oncology, 2018, 8, 143.	2.8	7
78	Identification of Immune Cell Infiltration in Murine Pheochromocytoma during Combined Mannan-BAM, TLR Ligand, and Anti-CD40 Antibody-Based Immunotherapy. Cancers, 2021, 13, 3942.	3.7	7
79	NCI experience using yeast-brachyury vaccine (GI-6301) in patients (pts) with advanced chordoma Journal of Clinical Oncology, 2014, 32, 3081-3081.	1.6	6
80	A novel ELISPOT assay to enhance detection of antigen-specific T cells employing antigen-presenting cells expressing vector-driven human B7-1. Journal of Immunological Methods, 2003, 279, 183-192.	1.4	5
81	Behind the IL-8 ball in prostate cancer. Nature Cancer, 2021, 2, 775-776.	13.2	3
82	A phase I study of a yeast-based therapeutic cancer vaccine, GI-6301, targeting brachyury in patients with metastatic carcinoma Journal of Clinical Oncology, 2014, 32, e14026-e14026.	1.6	2
83	A rare insight into the immunosuppressive landscape of prostate cancer bone metastases. Cancer Cell, 2021, 39, 1450-1452.	16.8	2
84	Recombinant TRICOM-based Therapeutic Cancer Vaccines. , 2013, , 309-331.		1
85	CBIO-01. TRANSCRIPTIONAL MODULATION OF BRACHYURY IN CHORDOMA. Neuro-Oncology, 2017, 19, vi32-vi33.	1.2	1
86	Abstract 1489: The T-box transcription factor Brachyury blocks cell cycle progression and mediates tumor resistance to chemotherapy and radiation , 2013, , .		1
87	176 Vector-based Vaccines for Cancer Therapy. Journal of Acquired Immune Deficiency Syndromes (1999), 2009, 51, .	2.1	0
88	The Use of T Cell Costimulation to Enhance the Immunogenicity of Tumors. , 2014, , 315-334.		0
89	The role of oncogenic MUC1-C in brachyury-induced immunotherapy resistance. , 2014, 2, .		0

#	Article	IF	CITATIONS
91	A phase 1 open label trial of intravenous administration of MVA-BN-Brachyury vaccine in patients with advanced cancer Journal of Clinical Oncology, 2021, 39, 2617-2617.	1.6	Ο
92	Systemic Immune Response in Murine Bilateral Pheochromocytoma Model During Immunotherapy Based on a Combination of Mannan-BAM, TLR Ligands and Anti-CD40 Antibodies (MBTA Therapy). Journal of the Endocrine Society, 2021, 5, A1032-A1033.	0.2	0
93	Modification of B-CLL Cells Via Infection with a Replication-Defective MVA Virus Encoding Three Costimulatory Molecules: A Potential Approach to Tumor Cell Immunotherapy of B-CLL Blood, 2004, 104, 2516-2516.	1.4	0
94	Abstract SY24-02: Development of recombinant vaccines for the prevention and therapy of human carcinomas. , 2011, , .		0
95	Abstract A64: Brachyury-mediated epithelial-mesenchymal transition of human carcinoma cells is associated with an increased resistance to immune-mediated attack. , 2011, , .		0
96	Abstract C53: Overexpression of Brachyury in human carcinoma cells drives the acquisition of resistance to anticancer therapeutics. , 2011, , .		0
97	Abstract 278: High levels of expression of the transcription factor Brachyury induce resistance of human carcinoma cells to immune-mediated attack , 2013, , .		0
98	Abstract 1260: Generation of human T cells directed against an agonist epitope of a transcription factor involved in epithelial to mesenchymal transition (EMT) , 2013, , .		0
99	Abstract 1676: Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death , 2013, , .		0
100	Brachyury. , 2014, , 1-13.		0
101	Abstract 4032: Modulation of tumor PD-L1 expression by epithelial-mesenchymal phenotypic plasticity. , 2016, , .		0
102	Phase I trial of a modified vaccinia ankara (MVA) priming vaccine followed by a fowlpox virus (FPV) boosting vaccine modified to express brachyury and costimulatory molecules in advanced solid tumors Journal of Clinical Oncology, 2019, 37, 2640-2640.	1.6	0