Reda Rawi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2607596/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host and Microbe, 2021, 29, 819-833.e7.	5.1	444
2	Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nature Medicine, 2018, 24, 857-867.	15.2	256
3	Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation. Cell Reports, 2017, 19, 719-732.	2.9	160
4	Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization. Cell, 2019, 178, 567-584.e19.	13.5	106
5	Completeness of HIV-1 Envelope Glycan Shield at Transmission Determines Neutralization Breadth. Cell Reports, 2018, 25, 893-908.e7.	2.9	91
6	Soluble Prefusion Closed DS-SOSIP.664-Env Trimers of Diverse HIV-1 Strains. Cell Reports, 2017, 21, 2992-3002.	2.9	69
7	Structural Survey of Broadly Neutralizing Antibodies Targeting the HIV-1 Env Trimer Delineates Epitope Categories and Characteristics of Recognition. Structure, 2019, 27, 196-206.e6.	1.6	69
8	Structure of Super-Potent Antibody CAP256-VRC26.25 in Complex with HIV-1 Envelope Reveals a Combined Mode of Trimer-Apex Recognition. Cell Reports, 2020, 31, 107488.	2.9	53
9	Surface-Matrix Screening Identifies Semi-specific Interactions that Improve Potency of a Near Pan-reactive HIV-1-Neutralizing Antibody. Cell Reports, 2018, 22, 1798-1809.	2.9	52
10	Consistent elicitation of cross-clade HIV-neutralizing responses achieved in guinea pigs after fusion peptide priming by repetitive envelope trimer boosting. PLoS ONE, 2019, 14, e0215163.	1.1	41
11	Preclinical Development of a Fusion Peptide Conjugate as an HIV Vaccine Immunogen. Scientific Reports, 2020, 10, 3032.	1.6	36
12	VRC34-Antibody Lineage Development Reveals How a Required Rare Mutation Shapes the Maturation of a Broad HIV-Neutralizing Lineage. Cell Host and Microbe, 2020, 27, 531-543.e6.	5.1	23
13	Development of a 3Mut-Apex-Stabilized Envelope Trimer That Expands HIV-1 Neutralization Breadth When Used To Boost Fusion Peptide-Directed Vaccine-Elicited Responses. Journal of Virology, 2020, 94,	1.5	21
14	Highly protective antimalarial antibodies via precision library generation and yeast display screening. Journal of Experimental Medicine, 2022, 219, .	4.2	9
15	Coevolution Analysis of HIV-1 Envelope Glycoprotein Complex. PLoS ONE, 2015, 10, e0143245.	1.1	7
16	Structural basis for llama nanobody recognition and neutralization of HIV-1 at the CD4-binding site. Structure, 2022, 30, 862-875.e4.	1.6	4
17	Extended antibody-framework-to-antigen distance observed exclusively with broad HIV-1-neutralizing antibodies recognizing glycan-dense surfaces. Nature Communications, 2021, 12, 6470.	5.8	3
18	COUSCOus: improved protein contact prediction using an empirical Bayes covariance estimator. BMC Bioinformatics, 2016, 17, 533.	1.2	2

Reda Rawi

#	Article	IF	CITATIONS
19	GLYCO: a tool to quantify glycan shielding of glycosylated proteins. Bioinformatics, 2022, 38, 1152-1154.	1.8	2
20	Residue-residue contact prediction in the HIV-1 envelope glycoprotein complex. , 2015, , .		0
21	Model Selection Emphasises the Importance of Non-Chromosomal Information in Genetic Studies. PLoS ONE, 2015, 10, e0117014.	1.1	0