Anamika Kalita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/260753/publications.pdf

Version: 2024-02-01

933447 1058476 14 431 10 14 citations h-index g-index papers 15 15 15 753 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Film-Based Electronic Volatile Acid Vapor Sensor with Ultrahigh Sensitivity for Real-Time Analysis. ACS Applied Electronic Materials, 2021, 3, 2720-2728.	4.3	4
2	Selective dual adsorption performance of hexagonal porous metal–organic framework rods towards CO2 gas and organic dye. New Journal of Chemistry, 2021, 45, 15280-15284.	2.8	5
3	Realization of multi-configurable logic gate behaviour on fluorescence switching signalling of naphthalene diimide congeners. RSC Advances, 2021, 11, 35274-35279.	3.6	2
4	Conjugated Polymer-Based Electrical Sensor for Ultratrace Vapor-Phase Detection of Nerve Agent Mimics. ACS Sensors, 2020, 5, 191-198.	7.8	20
5	Salicylic Acid Appended Naphthalene Diimide Organic Linkers: A Systematic Investigation towards Electronic Aspects. ChemistrySelect, 2020, 5, 12672-12678.	1.5	2
6	Stimuliâ€Responsive Naphthalene Diimide as Invisible Ink: A Rewritable Fluorescent Platform for Antiâ€Counterfeiting. Chemistry - an Asian Journal, 2020, 15, 1074-1080.	3.3	20
7	Multifunctional hierarchical 3-D ZnO superstructures directly grown over FTO glass substrates: enhanced photovoltaic and selective sensing applications. Journal of Materials Chemistry A, 2018, 6, 15868-15887.	10.3	21
8	Development of Well-Preserved, Substrate-Versatile Latent Fingerprints by Aggregation-Induced Enhanced Emission-Active Conjugated Polyelectrolyte. ACS Applied Materials & Enhanced Emission-Active Conjugated Polyelectrolyte. ACS Applied Materials & Enhanced Emission-Active Conjugated Polyelectrolyte. ACS Applied Materials & Enhanced Emission-Induced Enhanced Enh	8.0	69
9	The effect of inorganic/organic dual dielectric layers on the morphology and performance of n-channel OFETs. Physical Chemistry Chemical Physics, 2016, 18, 12163-12168.	2.8	12
10	Anion-Exchange Induced Strong π–π Interactions in Single Crystalline Naphthalene Diimide for Nitroexplosive Sensing: An Electronic Prototype for Visual on-Site Detection. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 25326-25336.	8.0	40
11	Large-Scale Molecular Packing and Morphology-Dependent High Performance Organic Field-Effect Transistor by Symmetrical Naphthalene Diimide Appended with Methyl Cyclohexane. Journal of Physical Chemistry C, 2015, 119, 12772-12779.	3.1	20
12	Vapor phase sensing of ammonia at the sub-ppm level using a perylene diimide thin film device. Journal of Materials Chemistry C, 2015, 3, 10767-10774.	5.5	74
13	Conjugated Polymer Nanoparticles for the Amplified Detection of Nitro-explosive Picric Acid on Multiple Platforms. ACS Applied Materials & Samp; Interfaces, 2015, 7, 26968-26976.	8.0	119
14	High-Performance n-Channel Organic Thin-Film Transistor Based on Naphthalene Diimide. ACS Applied Materials & Diterfaces, 2014, 6, 12295-12301.	8.0	23