
Rob Willemsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2606805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zebrafish: An In Vivo Screening Model to Study Ocular Phenotypes. Translational Vision Science and Technology, 2022, 11, 17.	2.2	6
2	A missense variant in the nuclear export signal of the FMR1 gene causes intellectual disability. Gene, 2021, 768, 145298.	2.2	6
3	Neuropathology of <i>FMR1</i> -premutation carriers presenting with dementia and neuropsychiatric symptoms. Brain Communications, 2021, 3, fcab007.	3.3	7
4	Comparing Approaches to Normalize, Quantify, and Characterize Urinary Extracellular Vesicles. Journal of the American Society of Nephrology: JASN, 2021, 32, 1210-1226.	6.1	53
5	Editorial: Proceedings of the "Fourth International Conference of the FMR1 Premutation: Basic Mechanisms, Clinical Involvement and Therapy― Frontiers in Molecular Biosciences, 2021, 8, 671875.	3.5	0
6	Loss of Gap Junction Delta-2 (GJD2) gene orthologs leads to refractive error in zebrafish. Communications Biology, 2021, 4, 676.	4.4	19
7	Small molecule <i>1a</i> reduces FMRpolyG-mediated toxicity in <i>in vitro</i> and <i>in vivo</i> models for <i>FMR1</i> premutation. Human Molecular Genetics, 2021, 30, 1632-1648.	2.9	9
8	Allopregnanolone Improves Locomotor Activity and Arousal in the Aged CGG Knock-in Mouse Model of Fragile X-Associated Tremor/Ataxia Syndrome. Frontiers in Neuroscience, 2021, 15, 752973.	2.8	1
9	Identification of antiparkinsonian drugs in the 6-hydroxydopamine zebrafish model. Pharmacology Biochemistry and Behavior, 2020, 189, 172828.	2.9	16
10	Lack of a Clear Behavioral Phenotype in an Inducible FXTAS Mouse Model Despite the Presence of Neuronal FMRpolyG-Positive Aggregates. Frontiers in Molecular Biosciences, 2020, 7, 599101.	3.5	10
11	Neuropathology of FMR1â€premutation carriers presenting with dementia and neuropsychiatric symptoms. Alzheimer's and Dementia, 2020, 16, e044916.	0.8	0
12	Reduction of Fmr1 mRNA Levels Rescues Pathological Features in Cortical Neurons in a Model of FXTAS. Molecular Therapy - Nucleic Acids, 2019, 18, 546-553.	5.1	11
13	Astroglial-targeted expression of the fragile X CGG repeat premutation in mice yields RAN translation, motor deficits and possible evidence for cell-to-cell propagation of FXTAS pathology. Acta Neuropathologica Communications, 2019, 7, 27.	5.2	14
14	CXorf56, a dendritic neuronal protein, identified as a new candidate gene for X-linked intellectual disability. European Journal of Human Genetics, 2018, 26, 552-560.	2.8	12
15	Binding of NUFIP2 to Roquin promotes recognition and regulation of ICOS mRNA. Nature Communications, 2018, 9, 299.	12.8	27
16	Protein synthesis levels are increased in a subset of individuals with fragile X syndrome. Human Molecular Genetics, 2018, 27, 2039-2051.	2.9	51
17	Potential pathogenic mechanisms underlying Fragile X Tremor Ataxia Syndrome: RAN translation and/or RNA gain-of-function?. European Journal of Medical Genetics, 2018, 61, 674-679.	1.3	24
18	Paradoxical effect of baclofen on social behavior in the fragile X syndrome mouse model. Brain and Behavior, 2018, 8, e00991.	2.2	11

Rob Willemsen

#	Article	IF	CITATIONS
19	A combined linkage, microarray and exome analysis suggests MAP3K11 as a candidate gene for left ventricular hypertrophy. BMC Medical Genomics, 2018, 11, 22.	1.5	4
20	IDH1-mutated transgenic zebrafish lines: An in-vivo model for drug screening and functional analysis. PLoS ONE, 2018, 13, e0199737.	2.5	4
21	BC RNA Mislocalization in the Fragile X Premutation. ENeuro, 2018, 5, ENEURO.0091-18.2018.	1.9	4
22	Impaired GABAergic inhibition in the hippocampus of Fmr1 knockout mice. Neuropharmacology, 2017, 116, 71-81.	4.1	58
23	New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics Human Molecular Genetics, 2017, 26, ddw399.	2.9	120
24	Translation of Expanded CGG Repeats into FMRpolyG Is Pathogenic and May Contribute to Fragile X Tremor Ataxia Syndrome. Neuron, 2017, 93, 331-347.	8.1	194
25	Selective rescue of heightened anxiety but not gait ataxia in a premutation 90CGG mouse model of Fragile X-associated tremor/ataxia syndrome. Human Molecular Genetics, 2017, 26, 2133-2145.	2.9	15
26	Combination Therapy in Fragile X Syndrome; Possibilities and Pitfalls Illustrated by Targeting the mCluR5 and GABA Pathway Simultaneously. Frontiers in Molecular Neuroscience, 2017, 10, 368.	2.9	15
27	Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. Journal of Experimental Medicine, 2016, 213, 1163-1174.	8.5	224
28	Synaptic vesicle dynamic changes in a model of fragile X. Molecular Autism, 2016, 7, 17.	4.9	21
29	A novel fragile X syndrome mutation reveals a conserved role for the carboxyâ€ŧerminus in <scp>FMRP</scp> localization and function. EMBO Molecular Medicine, 2015, 7, 423-437.	6.9	41
30	Heritabilities, proportions of heritabilities explained by GWAS findings, and implications of cross-phenotype effects on PR interval. Human Genetics, 2015, 134, 1211-1219.	3.8	20
31	In vivo synaptic transmission and morphology in mouse models of Tuberous sclerosis, Fragile X syndrome, Neurofibromatosis type 1, and Costello syndrome. Frontiers in Cellular Neuroscience, 2015, 9, 234.	3.7	24
32	Reply: PRKAR1B mutations are a rare cause of FUS negative neuronal intermediate filament inclusion disease. Brain, 2015, 138, e358-e358.	7.6	0
33	The GABA _A receptor is an FMRP target with therapeutic potential in fragile X syndrome. Cell Cycle, 2015, 14, 2985-2995.	2.6	87
34	The quest for targeted therapy in fragile X syndrome. Expert Opinion on Therapeutic Targets, 2015, 19, 1277-1281.	3.4	12
35	Epigenetic Characterization of the FMR1 Promoter in Induced Pluripotent Stem Cells from Human Fibroblasts Carrying an Unmethylated Full Mutation. Stem Cell Reports, 2014, 3, 548-555.	4.8	54
36	DAZL Limits Pluripotency, Differentiation, and Apoptosis in Developing Primordial Germ Cells. Stem Cell Reports, 2014, 3, 892-904.	4.8	83

Rob Willemsen

#	Article	IF	CITATIONS
37	Blood expression profiles of fragile X premutation carriers identify candidate genes involved in neurodegenerative and infertility phenotypes. Neurobiology of Disease, 2014, 65, 43-54.	4.4	23
38	Mouse models of the fragile X premutation and fragile X-associated tremor/ataxia syndrome. Journal of Neurodevelopmental Disorders, 2014, 6, 25.	3.1	57
39	Use of model systems to understand the etiology of fragile X-associated primary ovarian insufficiency (FXPOI). Journal of Neurodevelopmental Disorders, 2014, 6, 26.	3.1	55
40	Translational endpoints in fragile X syndrome. Neuroscience and Biobehavioral Reviews, 2014, 46, 256-269.	6.1	14
41	Reduced activity-dependent protein levels in a mouse model of the fragile X premutation. Neurobiology of Learning and Memory, 2014, 109, 160-168.	1.9	7
42	Sequestration of DROSHA and DGCR8 by Expanded CGG RNA Repeats Alters MicroRNA Processing in Fragile X-Associated Tremor/Ataxia Syndrome. Cell Reports, 2013, 3, 869-880.	6.4	216
43	Proteomic Profiling of Exosomes Leads to the Identification of Novel Biomarkers for Prostate Cancer. PLoS ONE, 2013, 8, e82589.	2.5	179
44	Sam68 sequestration and partial loss of function are associated with splicing alterations in FXTAS patients. EMBO Journal, 2010, 29, 1248-1261.	7.8	326
45	FMR1: A gene with three faces. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 467-477.	2.4	113
46	CGGâ€repeat length and neuropathological and molecular correlates in a mouse model for fragile Xâ€associated tremor/ataxia syndrome. Journal of Neurochemistry, 2008, 107, 1671-1682.	3.9	100
47	FXTAS: A progressive neurologic syndrome associated with fragile X premutation. Current Neurology and Neuroscience Reports, 2005, 5, 405-410.	4.2	26
48	Cognitive decline, neuromotor and behavioural disturbances in a mouse model for fragile-X-associated tremor/ataxia syndrome (FXTAS). Behavioural Brain Research, 2005, 162, 233-239.	2.2	117
49	The fragile X syndrome: From molecular genetics to neurobiology. Mental Retardation and Developmental Disabilities Research Reviews, 2004, 10, 60-67.	3.6	90
50	Clinical features of boys with fragile X premutations and intermediate alleles. American Journal of Medical Genetics Part A, 2003, 121B, 119-127.	2.4	143
51	The FMR1 CGG repeat mouse displays ubiquitin-positive intranuclear neuronal inclusions; implications for the cerebellar tremor/ataxia syndrome. Human Molecular Genetics, 2003, 12, 949-959.	2.9	253