
Werner Sieghart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2606511/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>α</i> 6-Containing GABA _A Receptors: Functional Roles and Therapeutic Potentials. Pharmacological Reviews, 2022, 74, 238-270.	16.0	14
2	Targeting $\hat{I}\pm 6$ GABAA receptors as a novel therapy for schizophrenia: A proof-of-concept preclinical study using various animal models. Biomedicine and Pharmacotherapy, 2022, 150, 113022.	5.6	5
3	α6GABAA Receptor Positive Modulators Alleviate Migraine-like Grimaces in Mice via Compensating GABAergic Deficits in Trigeminal Ganglia. Neurotherapeutics, 2021, 18, 569-585.	4.4	11
4	8-Substituted Triazolobenzodiazepines: In Vitro and In Vivo Pharmacology in Relation to Structural Docking at the α1 Subunit-Containing GABAA Receptor. Frontiers in Pharmacology, 2021, 12, 625233.	3.5	1
5	GABA _A receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	3
6	Immunohistochemical distribution of 10 <scp>GABA_A</scp> receptor subunits in the forebrain of the rhesus monkey <scp><i>Macaca mulatta</i></scp> . Journal of Comparative Neurology, 2020, 528, 2551-2568.	1.6	20
7	Alterations in GABAA Receptor Subunit Expression in the Amygdala and Entorhinal Cortex in Human Temporal Lobe Epilepsy. Journal of Neuropathology and Experimental Neurology, 2019, 78, 1022-1048.	1.7	8
8	Trigeminal neuropathic pain development and maintenance in rats are suppressed by a positive modulator of α6 GABA _A receptors. European Journal of Pain, 2019, 23, 973-984.	2.8	24
9	Structural and Functional Remodeling of Amygdala GABAergic Synapses in Associative Fear Learning. Neuron, 2019, 104, 781-794.e4.	8.1	24
10	A Novel Drug Target for Migraine: The GABA A Receptor α6 Subtype in Trigeminal Ganglia. FASEB Journal, 2019, 33, lb78.	0.5	0
11	GABA _A receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	2
12	Design and Synthesis of Novel Deuterated Ligands Functionally Selective for the γ-Aminobutyric Acid Type A Receptor (GABA _A R) α6 Subtype with Improved Metabolic Stability and Enhanced Bioavailability. Journal of Medicinal Chemistry, 2018, 61, 2422-2446.	6.4	40
13	Cerebellar α ₆ â€subunitâ€containing GABA _A receptors: a novel therapeutic target for disrupted prepulse inhibition in neuropsychiatric disorders. British Journal of Pharmacology, 2018, 175, 2414-2427.	5.4	25
14	GABA _A receptor subunits in the human amygdala and hippocampus: Immunohistochemical distribution of 7 subunits. Journal of Comparative Neurology, 2018, 526, 324-348.	1.6	35
15	International Union of Basic and Clinical Pharmacology. CVI: GABA _A Receptor Subtype- and Function-selective Ligands: Key Issues in Translation to Humans. Pharmacological Reviews, 2018, 70, 836-878.	16.0	144
16	Evidence That Sedative Effects of Benzodiazepines Involve Unexpected GABA _A Receptor Subtypes: Quantitative Observation Studies in Rhesus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2018, 366, 145-157.	2.5	17
17	Engineered Flumazenil Recognition Site Provides Mechanistic Insight Governing Benzodiazepine Modulation in GABA _A Receptors. ACS Chemical Biology, 2018, 13, 2040-2047.	3.4	8
18	The α6 subunit-containing GABAA receptor: A novel drug target for inhibition of trigeminal activation. Neuropharmacology, 2018, 140, 1-13.	4.1	19

#	Article	IF	CITATIONS
19	The cerebellar α6 subunit-containing GABA _A receptor: A novel therapeutic target for disrupted prepulse inhibition in neuropsychiatric disorders. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-1-95.	0.0	1
20	A Novel Target for Migraine Therapy: the α6 Subunit-Containing GABA _A Receptor. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-1-136.	0.0	0
21	Formation of GABAA receptor complexes containing α1 and α5 subunits is paralleling a multiple T-maze learning task in mice. Brain Structure and Function, 2017, 222, 549-561.	2.3	12
22	Early postnatal switch in GABA _A receptor α-subunits in the reticular thalamic nucleus. Journal of Neurophysiology, 2016, 115, 1183-1195.	1.8	13
23	Mutagenesis and computational docking studies support the existence of a histamine binding site at the extracellular β3+β3â^ interface of homooligomeric β3 GABA A receptors. Neuropharmacology, 2016, 108, 252-263.	4.1	13
24	First <i>In Vivo</i> Testing of Compounds Targeting Group 3 Medulloblastomas Using an Implantable Microdevice as a New Paradigm for Drug Development. Journal of Biomedical Nanotechnology, 2016, 12, 1297-1302.	1.1	36
25	The α1, α2, α3, and γ2 subunits of GABA _A receptors show characteristic spatial and temporal expression patterns in rhombencephalic structures during normal human brain development. Journal of Comparative Neurology, 2016, 524, 1805-1824.	1.6	20
26	GABAA receptor subtypes: structural variety raises hope for new therapy concepts. E-Neuroforum, 2015, 21, .	0.1	0
27	GABAA receptor subtypes: structural variety raises hope for new therapy concepts. E-Neuroforum, 2015, 6, 97-103.	0.1	3
28	Neurotoxins from Snake Venoms and α-Conotoxin ImI Inhibit Functionally Active Ionotropic γ-Aminobutyric Acid (GABA) Receptors. Journal of Biological Chemistry, 2015, 290, 22747-22758.	3.4	45
29	Allosteric Modulation of GABAA Receptors via Multiple Drug-Binding Sites. Advances in Pharmacology, 2015, 72, 53-96.	2.0	159
30	GABA _A Receptor Subtype-Selectivity of Novel Bicuculline Derivatives. Current Medicinal Chemistry, 2015, 22, 771-780.	2.4	5
31	Sh-I-048A, an in vitro non-selective super-agonist at the benzodiazepine site of GABAA receptors: The approximated activation of receptor subtypes may explain behavioral effects. Brain Research, 2014, 1554, 36-48.	2.2	17
32	Unexpected Properties of δ-Containing GABAA Receptors in Response to Ligands Interacting with the α+ βâ^' Site. Neurochemical Research, 2014, 39, 1057-1067.	3.3	14
33	Comparing the high affinity benzodiazepine binding site with the homologous "CGS 9895―site in GABAâ€A receptors (1059.1). FASEB Journal, 2014, 28, 1059.1.	0.5	0
34	The parvalbumin-positive interneurons in the mouse dentate gyrus express GABAA receptor subunits alpha1, beta2, and delta along their extrasynaptic cell membrane. Neuroscience, 2013, 254, 80-96.	2.3	51
35	A propofol binding site on mammalian GABAA receptors identified by photolabeling. Nature Chemical Biology, 2013, 9, 715-720.	8.0	199
36	Subtype selectivity of α+βâ^' site ligands of <scp>GABA_A</scp> receptors: identification of the first highly specific positive modulators at α6β2/3γ2 receptors. British Journal of Pharmacology, 2013, 169, 384-399.	5.4	48

#	Article	IF	CITATIONS
37	Search for α3β2/3γ2 subtype selective ligands that are stable on human liver microsomes. Bioorganic and Medicinal Chemistry, 2013, 21, 93-101.	3.0	17
38	Benzodiazepine-induced spatial learning deficits in rats are regulated by the degree of modulation of α1 GABAA receptors. European Neuropsychopharmacology, 2013, 23, 390-399.	0.7	10
39	Patterns of mRNA and protein expression for 12 GABAA receptor subunits in the mouse brain. Neuroscience, 2013, 236, 345-372.	2.3	201
40	Identification of novel positive allosteric modulators and null modulators at the <scp>GABA_A</scp> receptor α+βâ^' interface. British Journal of Pharmacology, 2013, 169, 371-383.	5.4	47
41	Anxioselective anxiolytics: additional perspective. Trends in Pharmacological Sciences, 2013, 34, 145-146.	8.7	2
42	Insights into functional pharmacology of $\hat{i}\pm 1$ GABAA receptors: how much does partial activation at the benzodiazepine site matter?. Psychopharmacology, 2013, 230, 113-123.	3.1	4
43	Pentameric ligand-gated ion channel ELIC is activated by GABA and modulated by benzodiazepines. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3028-34.	7.1	120
44	Azemiopsin from Azemiops feae Viper Venom, a Novel Polypeptide Ligand of Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 2012, 287, 27079-27086.	3.4	61
45	Deep Amino Acid Sequencing of Native Brain GABAA Receptors Using High-Resolution Mass Spectrometry. Molecular and Cellular Proteomics, 2012, 11, M111.011445.	3.8	135
46	Gephyrin, the enigmatic organizer at GABAergic synapses. Frontiers in Cellular Neuroscience, 2012, 6, 23.	3.7	103
47	Neurosteroid Analog Photolabeling of a Site in the Third Transmembrane Domain of the β3 Subunit of the GABA _A Receptor. Molecular Pharmacology, 2012, 82, 408-419.	2.3	69
48	Spatio-temporal expression analysis of the calcium-binding protein calumenin in the rodent brain. Neuroscience, 2012, 202, 29-41.	2.3	17
49	A novel GABA _A receptor pharmacology: drugs interacting with the α ⁺ β ^{â€} interface. British Journal of Pharmacology, 2012, 166, 476-485.	5.4	75
50	Transient transfection coupled to baculovirus infection for rapid protein expression screening in insect cells. Journal of Structural Biology, 2012, 179, 46-55.	2.8	19
51	Unravelling the role of GABA _A receptor subtypes in distinct neurons and behaviour. Journal of Physiology, 2012, 590, 2181-2182.	2.9	4
52	The Cell Adhesion Molecule Neuroplastin-65 Is a Novel Interaction Partner of Î ³ -Aminobutyric Acid Type A Receptors. Journal of Biological Chemistry, 2012, 287, 14201-14214.	3.4	44
53	Understanding subtype-selective allosteric modulation of GABAAreceptors. BMC Pharmacology & Toxicology, 2012, 13, .	2.4	0
54	Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands. Nature Chemical Biology, 2012, 8, 455-464.	8.0	175

#	Article	IF	CITATIONS
55	Histaminergic pharmacology of homo-oligomeric β3 γ-aminobutyric acid type A receptors characterized by surface plasmon resonance biosensor technology. Biochemical Pharmacology, 2012, 84, 341-351.	4.4	19
56	GABAA Receptors: Post-Synaptic Co-Localization and Cross-Talk with Other Receptors. Frontiers in Cellular Neuroscience, 2011, 5, 7.	3.7	47
57	Subunit Compensation and Plasticity of Synaptic GABAA Receptors Induced by Ethanol in ?4 Subunit Knockout Mice. Frontiers in Neuroscience, 2011, 5, 110.	2.8	26
58	Binge Drinking: In Search of its Molecular Target via the GABAA Receptor. Frontiers in Neuroscience, 2011, 5, 123.	2.8	16
59	Removal of GABAA Receptor γ2 Subunits from Parvalbumin Neurons Causes Wide-Ranging Behavioral Alterations. PLoS ONE, 2011, 6, e24159.	2.5	33
60	Differential localization of GABAA receptor subunits in relation to rat striatopallidal and pallidopallidal synapses. European Journal of Neuroscience, 2011, 33, 868-878.	2.6	25
61	Localization of GABAâ€A receptor alpha subunits on neurochemically distinct cell types in the rat locus coeruleus. European Journal of Neuroscience, 2011, 34, 250-262.	2.6	29
62	Fear learning induces structural and functional plasticity at GABAergic synapses in the basolateral amygdala. BMC Pharmacology, 2011, 11, A42.	0.4	0
63	Plasticity of GABA _A Receptors after Ethanol Pre-Exposure in Cultured Hippocampal Neurons. Molecular Pharmacology, 2011, 79, 432-442.	2.3	36
64	The GABA _A Receptor α+βâ^' Interface: A Novel Target for Subtype Selective Drugs. Journal of Neuroscience, 2011, 31, 870-877.	3.6	110
65	Regulation of GABAA Receptor Dynamics by Interaction with Purinergic P2X2 Receptors. Journal of Biological Chemistry, 2011, 286, 14455-14468.	3.4	31
66	Molecular Basis of the Î ³ -Aminobutyric Acid A Receptor α3 Subunit Interaction with the Clustering Protein Gephyrin. Journal of Biological Chemistry, 2011, 286, 37702-37711.	3.4	89
67	No association of the neuropeptide Y (Leu7Pro) and ghrelin gene (Arg51Gln, Leu72Met, Gln90Leu) single nucleotide polymorphisms with eating disorders. Nordic Journal of Psychiatry, 2011, 65, 203-207.	1.3	18
68	Binge alcohol drinking is associated with GABA _A α2-regulated Toll-like receptor 4 (TLR4) expression in the central amygdala. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4465-4470.	7.1	146
69	The point mutation γ2F77I changes the potency and efficacy of benzodiazepine site ligands in different GABAA receptor subtypes. European Journal of Pharmacology, 2010, 636, 18-27.	3.5	45
70	Fear learning triggers structural changes at GABAergic synapses in the basal amygdala. BMC Pharmacology, 2010, 10, .	0.4	1
71	Quantitative localisation of synaptic and extrasynaptic GABA _A receptor subunits on hippocampal pyramidal cells by freezeâ€fracture replica immunolabelling. European Journal of Neuroscience, 2010, 32, 1868-1888.	2.6	131
72	Protein Kinase C Phosphorylation Regulates Membrane Insertion of GABAA Receptor Subtypes That Mediate Tonic Inhibition. Journal of Biological Chemistry, 2010, 285, 41795-41805.	3.4	87

#	Article	IF	CITATIONS
73	Interaction between serotonin 5-HT2A receptor gene and dopamine transporter (DAT1) gene polymorphisms influences personality trait of persistence in Austrian Caucasians. World Journal of Biological Psychiatry, 2010, 11, 417-424.	2.6	14
74	Novel positive allosteric modulators of GABAA receptors: Do subtle differences in activity at α1 plus α5 versus α2 plus α3 subunits account for dissimilarities in behavioral effects in rats?. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 376-386.	4.8	43
75	Anxiolytic-like effects of 8-acetylene imidazobenzodiazepines in a rhesus monkey conflict procedure. Neuropharmacology, 2010, 59, 612-618.	4.1	55
76	Deficits in spatial memory correlate with modified γ-aminobutyric acid type A receptor tyrosine phosphorylation in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20039-20044.	7.1	53
77	Benzodiazepines modulate GABAA receptors by reducing a gamma-subunit-mediated inhibition of GABA sensitivity. BMC Pharmacology, 2009, 9, A23.	0.4	0
78	Gel-based mass spectrometric analysis of a strongly hydrophobic GABAA-receptor subunit containing four transmembrane domains. Nature Protocols, 2009, 4, 1093-1102.	12.0	51
79	Structure–activity relationship of etomidate derivatives at the GABAA receptor: Comparison with binding to 11β-hydroxylase. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4284-4287.	2.2	29
80	Antiseizure Activity of Novel γ-Aminobutyric Acid (A) Receptor Subtype-Selective Benzodiazepine Analogues in Mice and Rat Models. Journal of Medicinal Chemistry, 2009, 52, 1795-1798.	6.4	60
81	GABAA receptors: Subtypes provide diversity of function and pharmacology. Neuropharmacology, 2009, 56, 141-148.	4.1	836
82	New insights on the role of gephyrin in regulating both phasic and tonic GABAergic inhibition in rat hippocampal neurons in culture. Neuroscience, 2009, 164, 552-562.	2.3	24
83	Establishing a new mouse model for investigating the function of amygdala neurons in anxiety. BMC Pharmacology, 2008, 8, A35.	0.4	0
84	A study of the structure–activity relationship of GABAA–benzodiazepine receptor bivalent ligands by conformational analysis with low temperature NMR and X-ray analysis. Bioorganic and Medicinal Chemistry, 2008, 16, 8853-8862.	3.0	6
85	Estimating the efficiency of benzodiazepines on GABA _A receptors comprising γ1 or γ2 subunits. British Journal of Pharmacology, 2008, 155, 424-433.	5.4	20
86	PWZ-029, a compound with moderate inverse agonist functional selectivity at GABAA receptors containing α5 subunits, improves passive, but not active, avoidance learning in rats. Brain Research, 2008, 1208, 150-159.	2.2	54
87	6,3′-Dinitroflavone is a low efficacy modulator of GABAA receptors. European Journal of Pharmacology, 2008, 591, 142-146.	3.5	2
88	Selective Influence on Contextual Memory: Physiochemical Properties Associated with Selectivity of Benzodiazepine Ligands at GABA _A Receptors Containing the α5 Subunit. Journal of Medicinal Chemistry, 2008, 51, 3788-3803.	6.4	26
89	Gel-Based Mass Spectrometric Analysis of Recombinant GABAA Receptor Subunits Representing Strongly Hydrophobic Transmembrane Proteins. Journal of Proteome Research, 2008, 7, 3498-3506.	3.7	31
90	Assembly of GABA _A receptors (Review). Molecular Membrane Biology, 2008, 25, 302-310.	2.0	42

#	Article	IF	CITATIONS
91	Deficits in Phosphorylation of GABA _A Receptors by Intimately Associated Protein Kinase C Activity Underlie Compromised Synaptic Inhibition during Status Epilepticus. Journal of Neuroscience, 2008, 28, 376-384.	3.6	129
92	Are GABAA Receptors Containing α5 Subunits Contributing to the Sedative Properties of Benzodiazepine Site Agonists?. Neuropsychopharmacology, 2008, 33, 332-339.	5.4	65
93	Protein Kinase Cl̂´ Regulates Ethanol Intoxication and Enhancement of GABA-Stimulated Tonic Current. Journal of Neuroscience, 2008, 28, 11890-11899.	3.6	77
94	International Union of Pharmacology. LXX. Subtypes of γ-Aminobutyric Acid _A Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update. Pharmacological Reviews, 2008, 60, 243-260.	16.0	938
95	GABAA α6-Containing Receptors Are Selectively Compromised in Cerebellar Granule Cells of the Ataxic Mouse, Stargazer. Journal of Biological Chemistry, 2007, 282, 29130-29143.	3.4	21
96	An Updated Unified Pharmacophore Model of the Benzodiazepine Binding Site on γ-Aminobutyric Acida Receptors: Correlation with Comparative Models. Current Medicinal Chemistry, 2007, 14, 2755-2775.	2.4	68
97	Spontaneous Cross-link of Mutated α1 Subunits during GABAA Receptor Assembly. Journal of Biological Chemistry, 2007, 282, 4354-4363.	3.4	9
98	17 β-estradiol modulates GABAergic synaptic transmission and tonic currents during development in vitro. Neuropharmacology, 2007, 52, 1342-1353.	4.1	11
99	Additional support for linkage of schizophrenia and bipolar disorder to chromosome 3q29. European Neuropsychopharmacology, 2007, 17, 501-505.	0.7	8
100	From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors. Nature Neuroscience, 2007, 10, 923-929.	14.8	108
101	AMPA and kainate receptors mediate mutually exclusive effects on GABAAreceptor expression in cultured mouse cerebellar granule neurones. Journal of Neurochemistry, 2007, 104, 071106212614001-???.	3.9	9
102	Subunit Composition and Structure of GABAA-Receptor Subtypes. , 2007, , 69-86.		8
103	Structure, Pharmacology, and Function of GABAA Receptor Subtypes. Advances in Pharmacology, 2006, 54, 231-263.	2.0	270
104	Investigation of the abundance and subunit composition of GABAA receptor subtypes in the cerebellum of alpha1-subunit-deficient mice. Journal of Neurochemistry, 2006, 96, 136-147.	3.9	39
105	Identification of amino acid residues important for assembly of GABAA receptor alpha1 and gamma2 subunits. Journal of Neurochemistry, 2006, 96, 983-995.	3.9	15
106	Development of Î ³ -aminobutyric acidergic synapses in cultured hippocampal neurons. Journal of Comparative Neurology, 2006, 495, 497-510.	1.6	44
107	Aberrant GABAA Receptor Expression in the Dentate Gyrus of the Epileptic Mutant Mouse Stargazer. Journal of Neuroscience, 2006, 26, 8600-8608.	3.6	36
108	Ethanol potently and competitively inhibits binding of the alcohol antagonist Ro15-4513 to Â4/6beta3Â GABAA receptors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8546-8551.	7.1	117

#	Article	IF	CITATIONS
109	Pharmacological Properties of GABAA Receptors Containing \hat{I}^31 Subunits. Molecular Pharmacology, 2006, 69, 640-649.	2.3	83
110	GABAA receptors as targets for different classes of drugs. Drugs of the Future, 2006, 31, 685.	0.1	11
111	Loss of zolpidem efficacy in the hippocampus of mice with the GABAAreceptor γ2 F77I point mutation. European Journal of Neuroscience, 2005, 21, 3002-3016.	2.6	35
112	Cultured Hippocampal Pyramidal Neurons Express Two Kinds of GABAA Receptors. Molecular Pharmacology, 2005, 67, 775-788.	2.3	76
113	No association of clock gene T3111C polymorphism and affective disorders. European Neuropsychopharmacology, 2005, 15, 51-55.	0.7	43
114	Comparative Models of GABAA Receptor Extracellular and Transmembrane Domains: Important Insights in Pharmacology and Function. Molecular Pharmacology, 2005, 68, 1291-1300.	2.3	132
115	Clustering of Extrasynaptic GABAA Receptors Modulates Tonic Inhibition in Cultured Hippocampal Neurons. Journal of Biological Chemistry, 2004, 279, 45833-45843.	3.4	43
116	Behavioural correlates of an altered balance between synaptic and extrasynaptic GABAAergic inhibition in a mouse model. European Journal of Neuroscience, 2004, 20, 2168-2178.	2.6	23
117	Possible linkage of schizophrenia and bipolar affective disorder to chromosome 3q29. Journal of Psychiatric Research, 2004, 38, 357-364.	3.1	17
118	Affinity of various benzodiazepine site ligands in mice with a point mutation in the GABAA receptor γ2 subunit. Biochemical Pharmacology, 2004, 68, 1621-1629.	4.4	45
119	Distribution of α1, α4, γ2, and δÂsubunits of GABAA receptors in hippocampal granule cells. Brain Research, 2004, 1029, 207-216.	2.2	112
120	Abolition of zolpidem sensitivity in mice with a point mutation in the GABAA receptor γ2 subunit. Neuropharmacology, 2004, 47, 17-34.	4.1	70
121	Biological evaluation of 2â€2-[18F]fluoroflumazenil ([18F]FFMZ), a potential GABA receptor ligand for PET. Nuclear Medicine and Biology, 2004, 31, 291-295.	0.6	43
122	In vivo and in vitro evaluation of [18 F]FETO with respect to the adrenocortical and GABAergic system in rats. European Journal of Nuclear Medicine and Molecular Imaging, 2003, 30, 1398-1401.	6.4	35
123	Subunit composition and quantitative importance of GABA _A receptor subtypes in the cerebellum of mouse and rat. Journal of Neurochemistry, 2003, 87, 1444-1455.	3.9	94
124	A polymorphism (5-HTTLPR) in the serotonin transporter promoter gene is associated with DSM-IV depression subtypes in seasonal affective disorder. Molecular Psychiatry, 2003, 8, 942-946.	7.9	103
125	Comparative modeling of GABAA receptors: limits, insights, future developments. Neuroscience, 2003, 119, 933-943.	2.3	140
126	Synthesis, in Vitro Affinity, and Efficacy of a Bis 8-Ethynyl-4H-imidazo[1,5a]- [1,4]benzodiazepine Analogue, the First Bivalent α5 Subtype Selective BzR/GABAA Antagonist. Journal of Medicinal Chemistry, 2003, 46, 5567-5570.	6.4	41

#	Article	IF	CITATIONS
127	Increased Expression of GABA _A Receptor β-Subunits in the Hippocampus of Patients with Temporal Lobe Epilepsy. Journal of Neuropathology and Experimental Neurology, 2003, 62, 820-834.	1.7	75
128	A Novel Site on γ3 Subunits Important for Assembly of GABAA Receptors. Journal of Biological Chemistry, 2002, 277, 30656-30664.	3.4	19
129	Subunit Composition, Distribution and Function of GABA-A Receptor Subtypes. Current Topics in Medicinal Chemistry, 2002, 2, 795-816.	2.1	832
130	Tranexamic Acid, a Widely Used Antifibrinolytic Agent, Causes Convulsions by a Î ³ -Aminobutyric AcidA Receptor Antagonistic Effect. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 168-173.	2.5	192
131	Genome scan for susceptibility loci for schizophrenia and bipolar disorder. Biological Psychiatry, 2002, 52, 40-52.	1.3	95
132	Ectopic expression of the GABAA receptor α6 subunit in hippocampal pyramidal neurons produces extrasynaptic receptors and an increased tonic inhibition. Neuropharmacology, 2002, 43, 530-549.	4.1	63
133	Homologous sites of GABAA receptor α1, β3 and γ2 subunits are important for assembly. Neuropharmacology, 2002, 43, 482-491.	4.1	30
134	Altered receptor subtypes in the forebrain of GABAA receptor δ subunit-deficient mice: recruitment of γ2 subunits. Neuroscience, 2002, 109, 733-743.	2.3	121
135	GABAA receptor changes in ? subunit-deficient mice: Altered expression of ?4 and ?2 subunits in the forebrain. Journal of Comparative Neurology, 2002, 446, 179-197.	1.6	226
136	Association of protein kinase C with GABAA receptors containing $\hat{I}\pm 1$ and $\hat{I}\pm 4$ subunits in the cerebral cortex: selective effects of chronic ethanol consumption. Journal of Neurochemistry, 2002, 82, 110-117.	3.9	74
137	Identification of an amino acid sequence within GABAA receptor β3 subunits that is important for receptor assembly. Journal of Neurochemistry, 2002, 84, 127-135.	3.9	19
138	Binding of Î ³ -Aminobutyric AcidA Receptors to Tubulin. Journal of Neurochemistry, 2002, 63, 1119-1125.	3.9	29
139	N-Substituted 4-Amino-3,3-dipropyl-2(3H)-furanones: New Positive Allosteric Modulators of the GABAAReceptor Sharing Electrophysiological Properties with the Anticonvulsant Loreclezole. Journal of Medicinal Chemistry, 2002, 45, 2824-2831.	6.4	18
140	No evidence for in vivo regulation of midbrain serotonin transporter availability by serotonin transporter promoter gene polymorphism. Biological Psychiatry, 2001, 50, 8-12.	1.3	117
141	Î ³ -Aminobutyric Acid Receptor (GABAA) Subunits in Rat Nucleus Tractus Solitarii (NTS) Revealed by Polymerase Chain Reaction (PCR) and Immunohistochemistry. Molecular and Cellular Neurosciences, 2001, 17, 241-257.	2.2	31
142	Differential Cross Talk of ROD Compounds with the Benzodiazepine Binding Site. Molecular Pharmacology, 2001, 59, 1470-1477.	2.3	8
143	Alternate Use of Distinct Intersubunit Contacts Controls GABA _A Receptor Assembly and Stoichiometry. Journal of Neuroscience, 2001, 21, 9124-9133.	3.6	68
144	GABA Expression Dominates Neuronal Lineage Progression in the Embryonic Rat Neocortex and Facilitates Neurite Outgrowth via GABA _A Autoreceptor/Cl ^{â^'} Channels. Journal of Neuroscience, 2001, 21, 2343-2360.	3.6	148

#	Article	IF	CITATIONS
145	GABA influences the development of the ventromedial nucleus of the hypothalamus. Journal of Neurobiology, 2001, 49, 264-276.	3.6	46
146	Distribution of the major ?-aminobutyric acidA receptor subunits in the basal ganglia and associated limbic brain areas of the adult rat. Journal of Comparative Neurology, 2001, 433, 526-549.	1.6	155
147	Detection and Binding Properties of GABAA Receptor Assembly Intermediates. Journal of Biological Chemistry, 2001, 276, 16024-16032.	3.4	35
148	Targeted Disruption of the GABAA Receptor δ Subunit Gene Leads to an Up-regulation of γ2Subunit-containing Receptors in Cerebellar Granule Cells. Journal of Biological Chemistry, 2001, 276, 10532-10538.	3.4	88
149	Two Novel Residues in M2 of the γ-Aminobutyric Acid Type A Receptor Affecting Gating by GABA and Picrotoxin Affinity. Journal of Biological Chemistry, 2001, 276, 7775-7781.	3.4	33
150	Non-association of dopamine D4 and D2 receptor genes with personality in healthy individuals. Psychiatric Genetics, 2000, 10, 131-137.	1.1	54
151	Colocalization of multiple GABAA receptor subtypes with gephyrin at postsynaptic sites. , 2000, 420, 481-498.		163
152	Role of the GABAAreceptor γ2 subunit in the development of gonadotropin-releasing hormone neurons in vivo. European Journal of Neuroscience, 2000, 12, 3488-3496.	2.6	22
153	Use of bicuculline, a GABA antagonist, as a template for the development of a new class of ligands showing positive allosteric modulation of the GABAA receptor. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 2579-2583.	2.2	15
154	A novel positive allosteric modulator of the GABAA receptor: the action of (+)-ROD188. British Journal of Pharmacology, 2000, 131, 843-850.	5.4	13
155	Functional Correlation of GABA _A Receptor α Subunits Expression with the Properties of IPSCs in the Developing Thalamus. Journal of Neuroscience, 2000, 20, 2202-2208.	3.6	138
156	Î ³ -Aminobutyric acid, acting through Î ³ -aminobutyric acid type A receptors, inhibits the biosynthesis of neurosteroids in the frog hypothalamus. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13925-13930.	7.1	65
157	Subunit Composition and Pharmacological Characterization ofl ³ -Aminobutyric Acid Type A Receptors in Frog Pituitary Melanotrophs*. Endocrinology, 2000, 141, 1083-1092.	2.8	15
158	GABAA Receptor Phosphorylation and Functional Modulation in Cortical Neurons by a Protein Kinase C-dependent Pathway. Journal of Biological Chemistry, 2000, 275, 38856-38862.	3.4	162
159	GABAA Receptor Assembly. Journal of Biological Chemistry, 2000, 275, 8921-8928.	3.4	70
160	Genome Scan for Susceptibility Loci for Schizophrenia. Neuropsychobiology, 2000, 42, 175-182.	1.9	68
161	Association Studies of Candidate Genes in Bipolar Disorders. Neuropsychobiology, 2000, 42, 18-21.	1.9	24
162	Long-Range Interactions in Neuronal Gene Expression: Evidence from Gene Targeting in the GABAA Receptor l²2–α6–α1–γ2 Subunit Gene Cluster. Molecular and Cellular Neurosciences, 2000, 16, 34-41.	2.2	61

#	Article	IF	CITATIONS
163	GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience, 2000, 101, 815-850.	2.3	1,188
164	Association study of schizophrenia spectrum disorders and dopamine D3 receptor gene: is schizoaffective disorder special?. Psychiatry Research, 2000, 96, 179-183.	3.3	14
165	Unraveling the function of GABAA receptor subtypes. Trends in Pharmacological Sciences, 2000, 21, 411-413.	8.7	80
166	Synthesis and GABAA receptor activity of 6-oxa-analogs of neurosteroids. Steroids, 2000, 65, 349-356.	1.8	22
167	5-[1â€~-(2â€~-N-Arylsulfonyl-1â€~,2â€~,3â€~,4â€~-tetrahydroisoquinolyl)]-4,5-dihydro-2(3H)-furanones: Positive Allosteric Modulators of the CABAA Receptor with a New Mode of Action. Journal of Medicinal Chemistry, 2000, 43, 4363-4366.	6.4	20
168	Subunit Composition and Pharmacological Characterization of Â-Aminobutyric Acid Type A Receptors in Frog Pituitary Melanotrophs. Endocrinology, 2000, 141, 1083-1092.	2.8	3
169	GABAAReceptor Subunit Composition and Functional Properties of Clâ^'Channels with Differential Sensitivity to Zolpidem in Embryonic Rat Hippocampal Cells. Journal of Neuroscience, 1999, 19, 4921-4937.	3.6	37
170	Synaptic Control of Glycine and GABA _A Receptors and Gephyrin Expression in Cultured Motoneurons. Journal of Neuroscience, 1999, 19, 7434-7449.	3.6	91
171	Composition of the GABAAReceptors of Retinal Dopaminergic Neurons. Journal of Neuroscience, 1999, 19, 7812-7822.	3.6	50
172	Attenuated sensitivity to neuroactive steroids in γ-aminobutyrate type A receptor delta subunit knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12905-12910.	7.1	489
173	A Significant Part of Native γ-Aminobutyric AcidAReceptors Containing α4 Subunits Do Not Contain γ or δ Subunits. Journal of Biological Chemistry, 1999, 274, 19613-19616.	3.4	102
174	A Novel Serine Kinase with Specificity for β3-Subunits Is Tightly Associated with GABAA Receptors. Journal of Biological Chemistry, 1999, 274, 21257-21264.	3.4	10
175	Clusters of GABAAreceptors on cultured hippocampal cells correlate only partially with functional synapses. European Journal of Neuroscience, 1999, 11, 1256-1264.	2.6	44
176	Alterations in the expression of GABAAreceptor subunits in cerebellar granule cells after the disruption of the α6 subunit gene. European Journal of Neuroscience, 1999, 11, 1685-1697.	2.6	103
177	Differential regulation of synaptic GABAAreceptors by cAMP-dependent protein kinase in mouse cerebellar and olfactory bulb neurones. Journal of Physiology, 1999, 521, 421-435.	2.9	74
178	Dual mode of stimulation by the β-carboline ZK 91085 of recombinant GABAA receptor currents: molecular determinants affecting its action. British Journal of Pharmacology, 1999, 127, 1231-1239.	5.4	9
179	Special relationship of ?-aminobutyric acid to the ventromedial nucleus of the hypothalamus during embryonic development. , 1999, 405, 88-98.		50
180	EDPC: a novel high affinity ligand for the benzodiazepine site on rat GABAA receptors. Neuroscience Letters, 1999, 269, 63-66.	2.1	0

11

#	Article	IF	CITATIONS
181	Benzodiazepine-mediated regulation of α1, α2, β1–3 and γ2 GABAA receptor subunit proteins in the rat brain hippocampus and cortex. Neuroscience, 1999, 93, 33-44.	2.3	52
182	Behavioral effects of tryptophan depletion in seasonal affective disorder associated with the serotonin transporter gene?. Psychiatry Research, 1999, 85, 241-246.	3.3	34
183	The citalopram challenge test in patients with major depression and in healthy controls. Psychiatry Research, 1999, 88, 75-88.	3.3	76
184	Identification of subunits mediating clustering of GABAA receptors by rapsyn. Neurochemistry International, 1999, 34, 453-463.	3.8	20
185	Structure and subunit composition of GABAA receptors. Neurochemistry International, 1999, 34, 379-385.	3.8	278
186	Dopamine D3 receptor gene polymorphism and response to clozapine in schizophrenic Pakistani patients. European Neuropsychopharmacology, 1999, 10, 17-20.	0.7	120
187	Possible association between childhood absence epilepsy and the gene encoding GABRB3. Biological Psychiatry, 1999, 46, 997-1002.	1.3	57
188	GABAA, Receptor alpha1, alpha4, and beta3 Subunit mRNA and Protein Expression in the Frontal Cortex of Human Alcoholics. Alcoholism: Clinical and Experimental Research, 1998, 22, 815-822.	2.4	37
189	Initially expressed early rat embryonic GABAAreceptor Cl-ion channels exhibit heterogeneous channel properties. European Journal of Neuroscience, 1998, 10, 1771-1783.	2.6	29
190	Genetic polymorphisms for drug metabolism (CYP2D6) and tardive dyskinesia in schizophrenia. Schizophrenia Research, 1998, 32, 101-106.	2.0	117
191	Subunit Composition and Quantitative Importance of Hetero-oligomeric Receptors: GABA _A Receptors Containing α ₆ Subunits. Journal of Neuroscience, 1998, 18, 2449-2457.	3.6	190
192	Segregation of Different GABA _A Receptors to Synaptic and Extrasynaptic Membranes of Cerebellar Granule Cells. Journal of Neuroscience, 1998, 18, 1693-1703.	3.6	764
193	GABAA Receptor alpha1, alpha4, and beta3 Subunit mRNA and Protein Expression in the Frontal Cortex of Human Alcoholics. Alcoholism: Clinical and Experimental Research, 1998, 22, 815.	2.4	1
194	International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacological Reviews, 1998, 50, 291-313.	16.0	980
195	GABA(A) receptor alpha1, alpha4, and beta3 subunit mRNA and protein expression in the frontal cortex of human alcoholics. Alcoholism: Clinical and Experimental Research, 1998, 22, 815-22.	2.4	23
196	CYP2D6 genotype and phenotyping by determination of dextromethorphan and metabolites in serum of healthy controls and of patients under psychotropic medication. Pharmacogenetics and Genomics, 1997, 7, 453-461.	5.7	43
197	Biperiden and Haloperidol Plasma Levels and Extrapyramidal Side Effects in Schizophrenic Patients. Neuropsychobiology, 1997, 36, 69-72.	1.9	1
198	GABAA receptor subunits in the rat hippocampus III: altered messenger RNA expression in kainic acid-induced epilepsy. Neuroscience, 1997, 80, 1019-1032.	2.3	135

#	Article	IF	CITATIONS
199	GABAA receptor subunits in the rat hippocampus II: Altered distribution in kainic acid-induced temporal lobe epilepsy. Neuroscience, 1997, 80, 1001-1017.	2.3	163
200	GABAA receptor subunits in the rat hippocampus I: Immunocytochemical distribution of 13 subunits. Neuroscience, 1997, 80, 987-1000.	2.3	301
201	Ligand-Gated Ion Channel Subunit Partnerships: GABA _A Receptor α ₆ Subunit Gene Inactivation Inhibits δ Subunit Expression. Journal of Neuroscience, 1997, 17, 1350-1362.	3.6	313
202	Stoichiometry and Assembly of a Recombinant GABA _A Receptor Subtype. Journal of Neuroscience, 1997, 17, 2728-2737.	3.6	438
203	Anatomical Gradients in Proliferation and Differentiation of Embryonic Rat CNS Accessed by Buoyant Density Fractionation: α3, β3 and γ2 GABAAReceptor Subunit Co-expression by Post-mitotic Neocortical Neurons Correlates Directly with Cell Buoyancy. European Journal of Neuroscience, 1997, 9, 507-522.	2.6	37
204	Bidirectional Alterations of GABA _A Receptor Subunit Peptide Levels in Rat Cortex During Chronic Ethanol Consumption and Withdrawal. Journal of Neurochemistry, 1997, 69, 126-130.	3.9	243
205	The influence of phenotype on the outcome of linkage analysis of schizophrenia. Schizophrenia Research, 1996, 22, 89-90.	2.0	2
206	Interaction of allosteric ligands with GABAA receptors containing one, two, or three different subunits. European Journal of Pharmacology, 1996, 301, 207-214.	3.5	83
207	Affinity of various ligands for GABAA receptors containing α4β3γ2, α4γ2, or α1β3γ2 subunits. European Journ of Pharmacology, 1996, 304, 155-162.	al 3.5	28
208	Extensive Heterogeneity of Recombinant γ-Aminobutyric Acid A Receptors Expressed in α 4 β 3 γ 2 -Transfected Human Embryonic Kidney 293 Cells. Neuropharmacology, 1996, 35, 1323-1330.	4.1	27
209	The γ2 Subunit of the GABA A Receptor is Concentrated in Synaptic Junctions Containing the α1 and β 23 Subunits in Hippocampus, Cerebellum and Globus Pallidus. Neuropharmacology, 1996, 35, 1425-1444.	4.1	164
210	Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11939-11944.	7.1	362
211	The alpha 6 subunit of the GABAA receptor is concentrated in both inhibitory and excitatory synapses on cerebellar granule cells. Journal of Neuroscience, 1996, 16, 103-114.	3.6	138
212	Schizophrenia and the dopamine-Î ² -hydroxylase gene. Psychiatric Genetics, 1996, 6, 17-22.	1.1	27
213	Normal CAG repeats in the Huntington gene in a family with benign familial chorea. Psychiatric Genetics, 1996, 6, 91-94.	1.1	0
214	Striatal efferents preferentially innervate neurons in the ventral pallidum containing GABAA receptor ? 1 subunit-like immunoreactivity. , 1996, 23, 107-114.		5
215	Colocalization of GABA, glycine, and their receptors at synapses in the rat spinal cord. Journal of Neuroscience, 1996, 16, 974-982.	3.6	352
216	Distribution of GABA ^A receptor alpha 1 subunitâ€like immunoreactivity in comparision with that of enkephalin and substance P in the rat forebrain. Synapse, 1995, 20, 165-174.	1.2	7

#	Article	IF	CITATIONS
217	Immunocytochemical Localization of the $\hat{I}\pm1$ and $\hat{I}^22/3$ Subunits of the GABAAReceptor in Relation to Specific GABAergic Synapses in the Dentate Gyrus. European Journal of Neuroscience, 1995, 7, 630-646.	2.6	159
218	Allosteric modulation of [3H]flunitrazepam binding to recombinant GABAA receptors. European Journal of Pharmacology, 1995, 291, 99-105.	2.6	24
219	Endogenous [3H]flunitrazepam binding in human embryonic kidney cell line 293. European Journal of Pharmacology, 1995, 289, 87-95.	2.6	35
220	[3H]Propyl-6-azido-β-carboline-3-carboxylate: a new photoaffinity label for the GABAA-benzodiazepine receptor. European Journal of Pharmacology, 1995, 281, 93-96.	3.5	3
221	Cellular localization and differential distribution of GABAA receptor subunit proteins and messenger RNAs within hypothalamic magnocellular neurons. Neuroscience, 1995, 64, 1129-1143.	2.3	68
222	Allosteric modulation of 63H9flunitrazepam binding to recombinant GABAA receptors. European Journal of Pharmacology, 1995, 291, 99-105.	3.5	1
223	Rat beta 3 subunits expressed in human embryonic kidney 293 cells form high affinity [35S]t-butylbicyclophosphorothionate binding sites modulated by several allosteric ligands of gamma-aminobutyric acid type A receptors. Molecular Pharmacology, 1995, 48, 385-91.	2.3	69
224	Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacological Reviews, 1995, 47, 181-234.	16.0	1,038
225	Immunohistochemical and neurochemical evidence for GABAA receptor heterogeneity between the hypothalamus and cortex. Journal of Chemical Neuroanatomy, 1994, 7, 243-252.	2.1	11
226	Polyclonal Antibodies Directed Against an Epitope Specific for the α4â€Subunit of GABA _A Receptors Identify a 67â€kDa Protein in Rat Brain Membranes. Journal of Neurochemistry, 1994, 62, 764-769.	3.9	37
227	Immunoaffinity purification of gamma-aminobutyric acidA (GABAA) receptors containing gamma 1-subunits. Evidence for the presence of a single type of gamma-subunit in GABAA receptors. Journal of Biological Chemistry, 1994, 269, 25777-82.	3.4	46
228	gamma-Aminobutyric acidA receptors displaying association of gamma 3-subunits with beta 2/3 and different alpha-subunits exhibit unique pharmacological properties. Journal of Biological Chemistry, 1994, 269, 12993-8.	3.4	35
229	Evidence for the Existence of Differential O-Glycosylated ?5-Subunits of the ?-Aminobutyric AcidAReceptor in the Rat Brain. Journal of Neurochemistry, 1993, 60, 93-98.	3.9	19
230	Antibodies Specific for GABAAReceptor ? Subunits Reveal that Chronic Alcohol Treatment Down-Regulates ?-Subunit Expression in Rat Brain Regions. Journal of Neurochemistry, 1993, 61, 1620-1625.	3.9	175
231	No proof of linkage between schizophrenia-related disorders including schizophrenia and chromosome 2q21 region. European Archives of Psychiatry and Clinical Neuroscience, 1993, 243, 193-198.	3.2	23
232	Clinical-pharmacological study with the two isomers (d-, l-) of fenfluramine and its comparison with chlorpromazine and d-amphetamine: blood levels, EEG mapping and safety evaluation. Methods and Findings in Experimental and Clinical Pharmacology, 1993, 15, 291-312.	0.8	7
233	RFLP linkage study in schizophrenia on chromosome 2. Schizophrenia Research, 1992, 6, 89.	2.0	1
234	GABAA receptors: ligand-gated Clâ^' ion channels modulated by multiple drug-binding sites. Trends in Pharmacological Sciences, 1992, 13, 446-450.	8.7	369

#	Article	IF	CITATIONS
235	Molecular basis of pharmacological heterogeneity of GABAA receptors. Cellular Signalling, 1992, 4, 231-237.	3.6	34
236	Immunohistochemical localization of the α1, α2 and α3 subunit of the GABAA receptor in the rat brain. Neuroscience Letters, 1991, 127, 125-128.	2.1	99
237	Identification of α1-, α2- and α3-subunit isoforms of the GABAA-benzodiazepine receptor in the rat brain. Neuroscience Letters, 1991, 129, 237-241.	2.1	26
238	N-Deglycosylation and immunological identification indicates the existence of Î ² -subunit isoforms of the rat GABAAreceptor. FEBS Letters, 1991, 287, 27-30.	2.8	30
239	Isolation of type I and type II GABAA-benzodiazepine receptors by immunoaffinity chromatography. FEBS Letters, 1991, 284, 15-18.	2.8	41
240	Potency of several type I-benzodiazepine receptor ligands for inhibition of [3H]flunitrazepam binding in different rat brain tissues. European Journal of Pharmacology, 1991, 197, 103-107.	3.5	19
241	Separation of a1, a2 and a3 subunits of the GABAA-benzodiazepine receptor complex by immunoaffinity chromatography. Brain Research, 1991, 563, 325-328.	2.2	56
242	Heterogeneity of GABAA-benzodiazepine receptors. Biochemical Society Transactions, 1991, 19, 129-132.	3.4	12
243	Flumazenil Failed to Rapidly Terminate Midazolam Anesthesia in an Opiate Addict. Annals of Clinical Psychiatry, 1991, 3, 137-139.	0.6	0
244	Identification of α2 - and α3 -subunits of the GABAA -benzodiazepine receptor complex purified from the brains of young rats. FEBS Letters, 1990, 261, 52-54.	2.8	47
245	Multiplicity of GABAA-benzodiazepine receptors. Trends in Pharmacological Sciences, 1989, 10, 407-411.	8.7	137
246	Evidence for the existence of several different α- and β-subunits of the GABA/benzodiazepine receptor complex from rat brain. Neuroscience Letters, 1989, 97, 329-333.	2.1	59
247	Comparison of two different benzodiazepine binding proteins by peptide mapping after limited proteolysis. Brain Research, 1988, 450, 387-391.	2.2	8
248	Various proteins from rat brain, specifically and irreversibly labeled by [3H]flunitrazepam, are distinct α-subunits of the GABA-benzodiazepine receptor complex. Neuroscience Letters, 1988, 90, 314-319.	2.1	62
249	Modification of the apparent molecular weight of different benzodiazepine binding proteins from rat brain membranes by various endoglycosidases. Neuroscience Letters, 1988, 86, 213-218.	2.1	4
250	Plasma Concentrations of Haloperidol and Prolactin and Clinical Outcome in Acutely Psychotic Patients. Pharmacopsychiatry, 1988, 21, 246-251.	3.3	14
251	Comparative Bioavailability Studies with a New Mixed-micelles Solution of Diazepam Utilizing Radioreceptor Assay, Psychometry and EEG Brain Mapping. International Clinical Psychopharmacology, 1988, 3, 287-323.	1.7	19
252	Comparison of Tryptic Peptides of Benzodiazepine Binding Proteins Photolabeled with [3H]Flunitrazepam or [3H]Ro 15?4513. Journal of Neurochemistry, 1987, 48, 1109-1114.	3.9	12

#	Article	IF	CITATIONS
253	Photoaffinity Labeling of Benzodiazepine Receptor Proteins with the Partial Inverse Agonist [3H]Ro 15?4513: A Biochemical and Autoradiographic Study. Journal of Neurochemistry, 1987, 48, 46-52.	3.9	201
254	Improved radioimmunoassay of melatonin in serum. Clinical Chemistry, 1987, 33, 604-5.	3.2	2
255	A rapid and simple method for efficient coating of microtiter plates using low amounts of antigen in the presence of detergent. Journal of Immunological Methods, 1986, 95, 117-122.	1.4	25
256	Light Treatment in Depressive Illness. European Neurology, 1986, 25, 93-103.	1.4	61
257	Pharmacoâ€EEG, behavioural methods and blood levels in the comparison of temazepam and flunitrazepam. Acta Psychiatrica Scandinavica, 1986, 74, 67-94.	4.5	7
258	Postnatal Development of Proteins Associated with Different Benzodiazepine Receptors. Journal of Neurochemistry, 1986, 46, 173-180.	3.9	63
259	Comparison of Benzodiazepine Receptors in Cerebellum and Inferior Colliculus. Journal of Neurochemistry, 1986, 47, 920-923.	3.9	25
260	Nocturnal Traffic Noise, Sleep, and Quality of Awakening: Neurophysiologic, Psychometric, and Receptor Activity Changes after Quazepam. Clinical Neuropharmacology, 1985, 8, S74-S90.	0.7	6
261	Differential Degradation of Different Benzodiazepine Binding Proteins by Incubation of Membranes from Cerebellum or Hippocampus with Trypsin. Journal of Neurochemistry, 1985, 45, 219-226.	3.9	21
262	Benzodiazepine receptors: Multiple receptors or multiple conformations?. Journal of Neural Transmission, 1985, 63, 191-208.	2.8	49
263	Binding of Various Benzodiazepine Receptor Ligands to Different Benzodiazepine Receptor Subtypes. Pharmacopsychiatry, 1985, 18, 160-162.	3.3	1
264	Comparison of benzodiazepine receptor binding in membranes from human or rat brain. Neuropharmacology, 1985, 24, 751-759.	4.1	41
265	Photoaffinity Labeling of Different Benzodiazepine Receptors at Physiological Temperature. Journal of Neurochemistry, 1984, 43, 1745-1748.	3.9	15
266	Apparent identity of?-subunit of pyruvate dehydrogenase and the protein phosphorylated in the presence of glutamate in P2-fractions of rat cerebral cortex. Journal of Neural Transmission, 1984, 59, 119-132.	2.8	3
267	Evidence for association of a high affinity avermectin binding site with the benzodiazepine receptor. European Journal of Pharmacology, 1984, 101, 201-207.	3.5	29
268	[35S]tertbutylbicyclophosphorothionate and avermectin bind to different sites associated with the γ-aminobutyric acid-benzodiazepine receptor complex. Neuroscience Letters, 1984, 50, 273-277.	2.1	18
269	Properties of a high affinity binding site for [3H]avermectin B1a. European Journal of Pharmacology, 1984, 99, 269-277.	3.5	44
270	Photoaffinity labeling of benzodiazepine receptors with a partial inverse agonist. European Journal of Pharmacology, 1984, 102, 191-192.	3.5	80

#	Article	IF	CITATIONS
271	Affinity of various ligands for benzodiazepine receptors in rat cerebellum and hippocampus. Biochemical Pharmacology, 1984, 33, 4033-4038.	4.4	94
272	Irreversible Binding of [3H]Flunitrazepam to Different Proteins in Various Brain Regions. Journal of Neurochemistry, 1983, 41, 47-55.	3.9	66
273	Several new benzodiazepines selectively interact with a benzodiazepine receptor subtype. Neuroscience Letters, 1983, 38, 73-78.	2.1	64
274	Properties of [3H]flunitrazepam binding to different benzodiazepine binding proteins. European Journal of Pharmacology, 1983, 88, 291-299.	3.5	62
275	Postnatal development of proteins irreversibly labeled by [3H]flunitrazepam. Neuroscience Letters, 1982, 31, 71-74.	2.1	33
276	[3H]clonazepam, like [3H]flunitrazepam, is a photoaffinity label for the central type of benzodiazepine receptors. European Journal of Pharmacology, 1982, 81, 171-173.	3.5	23
277	Properties of benzodiazepine receptors in rat retina. Experimental Eye Research, 1982, 34, 961-967.	2.6	10
278	Somatostatin-induced phosphorylation of mast cell proteins. Biochemical Pharmacology, 1981, 30, 2735-2736.	4.4	12
279	Phosphorylation of a single mast cell protein in response to drugs that inhibit secretion. Biochemical Pharmacology, 1981, 30, 2737-2738.	4.4	29
280	Sedimentation and release properties of P2 fractions derived from rat cerebral cortex slices incubated with radiolabeled GABA for a short or long time period. Neurochemical Research, 1981, 6, 1193-1203.	3.3	2
281	Glutamate-Stimulated Phosphorylation of a Specific Protein in P2Fractions of Rat Cerebral Cortex. Journal of Neurochemistry, 1981, 37, 1116-1124.	3.9	18
282	Effects of Antidepressant Treatment with Clomipramine on Hormonal Responses to Thyrotropin-Releasing Hormone and Insulin-induced Hypoglycemia: Implications for the "Monoamine-Hypothesis"*. Pharmacopsychiatry, 1981, 14, 100-106.	3.3	6
283	CABA receptor associated drug receptors. Advances in Biochemical Psychopharmacology, 1981, 26, 121-8.	0.1	Ο
284	Molecular heterogeneity of benzodiazepine receptors. Nature, 1980, 286, 285-287.	27.8	328
285	Neuronal Localization of Ca2+-dependent Protein Phosphorylation in Brain. Journal of Neurochemistry, 1980, 34, 548-553.	3.9	24
286	Antiallergic drug cromolyn may inhibit histamine secretion by regulating phosphorylation of a mast cell protein. Science, 1980, 207, 80-82.	12.6	239
287	Properties of [3H]taurine release from crude synaptosomal fractions of rat cerebral cortex. Neurochemical Research, 1979, 4, 703-712.	3.3	20
288	Sedimentation and release properties of glial particles present in P2-fractions isolated from rat cerebral cortex. Brain Research, 1979, 170, 203-208.	2.2	15

#	Article	IF	CITATIONS
289	Ca2+ and cyclic AMP regulate phosphorylation of same two membrane-associated proteins specific to nerve tissue Proceedings of the National Academy of Sciences of the United States of America, 1979, 76, 2475-2479.	7.1	76
290	Drug interactions with cyclic nucleotide and protein phosphorylation systems. Progress in Clinical and Biological Research, 1979, 27, 123-34.	0.2	0
291	Identification of the cyclic AMP-dependent protein kinase responsible for endogenous phosphorylation of substrate proteins in synaptic membrane fraction from rat brain. Journal of Biological Chemistry, 1979, 254, 12235-9.	3.4	33
292	Calcium-dependent protein phosphorylation during secretion by exocytosis in the mast cell. Nature, 1978, 275, 329-331.	27.8	170
293	Sedimentation characteristics of subcellular vesicles derived from three glial systems. Journal of Neurochemistry, 1978, 30, 1587-1589.	3.9	26
294	Neuronal localization of specific brain phosphoproteins. Brain Research, 1978, 156, 345-350.	2.2	38
295	Potassium-evoked release of taurine from synaptosomal fractions of rat cerebral cortex. Brain Research, 1976, 116, 538-543.	2.2	41
296	Subcellular distribution of dopamine-sensitive adenylate cyclase. Brain Research, 1976, 109, 418-422.	2.2	11
297	UPTAKE OF TAURINE INTO SUBCELLULAR FRACTIONS OF C-6 GLIOMA CELLS. Journal of Neurochemistry, 1976, 26, 981-986.	3.9	33
298	TAURINE UPTAKE IN SYNAPTOSOMAL FRACTIONS OF RAT CEREBRAL CORTEX. Journal of Neurochemistry, 1975, 25, 5-9.	3.9	81
299	EVIDENCE FOR SPECIFIC SYNAPTOSOMAL LOCALIZATION OF EXOGENOUS ACCUMULATED TAURINE. Journal of Neurochemistry, 1974, 23, 911-915.	3.9	45