Mahmood Jabareen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2606452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Cosserat Point Element as an Accurate and Robust Finite Element Formulation for Implicit Dynamic Simulations. International Journal of Computational Methods, 2020, 17, 1844006.	0.8	1
2	Does the classical solid-shell element with the assumed natural strain method satisfy the three-dimensional patch test for arbitrary geometry?. Finite Elements in Analysis and Design, 2020, 168, 103331.	1.7	3
3	A polygonal finite element formulation for modeling nearly incompressible materials. Meccanica, 2020, 55, 701-723.	1.2	9
4	A solid–shell formulation based on the assumed natural inhomogeneous strains for modeling the viscoelastic response of electro-active polymers. Computational Mechanics, 2020, 66, 1-25.	2.2	5
5	Numerical modeling of rock failure under dynamic loading with polygonal elements. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43, 2056-2074.	1.7	13
6	A reduced mixed finite-element formulation for modeling the viscoelastic response of electro-active polymers at finite deformation. Mathematics and Mechanics of Solids, 2019, 24, 1578-1610.	1.5	18
7	A solid-shell Cosserat point element for the analysis of geometrically linear and nonlinear laminated composite structures. Finite Elements in Analysis and Design, 2018, 142, 61-80.	1.7	7
8	A general framework for the numerical implementation of anisotropic hyperelastic material models including non-local damage. Biomechanics and Modeling in Mechanobiology, 2017, 16, 1119-1140.	1.4	13
9	A 3D Cosserat point element (CPE) for nonlinear orthotropic solids: Generalization for an initially distorted mesh and an arbitrary orientation of material orthotropy. International Journal for Numerical Methods in Engineering, 2016, 106, 3-31.	1.5	6
10	A solid-shell Cosserat point element (SSCPE) for elastic thin structures at finite deformation. Computational Mechanics, 2016, 58, 59-89.	2.2	6
11	Modeling of skin anisotropy directions for identifying stress free reference configuration of the female breast. Proceedings in Applied Mathematics and Mechanics, 2015, 15, 97-98.	0.2	0
12	On the Modeling of Electromechanical Coupling in Electroactive Polymers Using the Mixed Finite Element Formulation. Procedia IUTAM, 2015, 12, 105-115.	1.2	17
13	A unified theoretical structure for modeling interstitial growth and muscle activation in soft tissues. International Journal of Engineering Science, 2015, 90, 1-26.	2.7	23
14	Strongly objective numerical implementation and generalization of a unified large inelastic deformation model with a smooth elastic–inelastic transition. International Journal of Engineering Science, 2015, 96, 46-67.	2.7	18
15	Suction based mechanical characterization of superficial facial soft tissues. Journal of Biomechanics, 2015, 48, 4279-4286.	0.9	52
16	A six node plane strain triangular Cosserat Point Element (CPE) for nonlinear elasticity. International Journal of Engineering Science, 2014, 74, 118-142.	2.7	3
17	A plane strain quadrilateral Cosserat point element (CPE) for nonlinear orthotropic elastic materials — An extension to initially distorted geometry and general orthotropic directions. Finite Elements in Analysis and Design, 2014, 87, 10-21.	1.7	7
18	Modeling rupture of growing aneurysms. Journal of Biomechanics, 2014, 47, 653-658.	0.9	15

Mahmood Jabareen

#	Article	IF	CITATIONS
19	A general finite plasticity model with a smooth elastic-plastic transition and isotropic hardening. A finite element formulation and numerical verification. Proceedings in Applied Mathematics and Mechanics, 2014, 14, 351-352.	0.2	0
20	Modeling a smooth elastic–inelastic transition with a strongly objective numerical integrator needing no iteration. Computational Mechanics, 2013, 52, 649-667.	2.2	57
21	A ten node tetrahedral Cosserat Point Element (CPE) for nonlinear isotropic elastic materials. Computational Mechanics, 2013, 52, 257-285.	2.2	20
22	Multiaxial mechanical behavior of human fetal membranes and its relationship to microstructure. Biomechanics and Modeling in Mechanobiology, 2013, 12, 747-762.	1.4	45
23	Cosserat point element (CPE) for finite deformation of orthotropic elastic materials. Computational Mechanics, 2012, 49, 525-544.	2.2	8
24	Experimental and numerical study on the mechanical behavior of the superficial layers of the face. Skin Research and Technology, 2011, 17, 434-444.	0.8	45
25	Further Developments of Physically Based Invariants forÂNonlinear Elastic Orthotropic Solids. Journal of Elasticity, 2011, 103, 289-294.	0.9	11
26	On non-physical response in models for fiber-reinforced hyperelastic materials. International Journal of Solids and Structures, 2010, 47, 2056-2061.	1.3	69
27	Experimental and numerical study of the relaxation behavior of facial soft tissue. Proceedings in Applied Mathematics and Mechanics, 2009, 9, 87-90.	0.2	5
28	Rigorous buckling of laminated cylindrical shells. Thin-Walled Structures, 2009, 47, 233-240.	2.7	9
29	Stability of imperfect stiffened conical shells. International Journal of Solids and Structures, 2009, 46, 2111-2125.	1.3	22
30	Intraoperative mechanical characterization of human liver. Proceedings in Applied Mathematics and Mechanics, 2009, 9, 83-86.	0.2	7
31	Dynamic buckling of a beam on a nonlinear elastic foundation under step loading. Journal of Mechanics of Materials and Structures, 2009, 4, 1365-1373.	0.4	14
32	One-dimensional analysis of tension stiffening in reinforced concrete with discrete cracks. Engineering Structures, 2008, 30, 206-217.	2.6	60
33	A Cosserat point element (CPE) for nearly planar problems (including thickness changes) in nonlinear elasticity. International Journal of Engineering Science, 2008, 46, 986-1010.	2.7	5
34	A generalized Cosserat point element (CPE) for isotropic nonlinear elastic materials including irregular 3-D brick and thin structures. Journal of Mechanics of Materials and Structures, 2008, 3, 1465-1498.	0.4	19
35	Hyperelasticity and physical shear buckling of a block predicted by the Cosserat point element compared with inelasticity and hourglassing predicted by other element formulations. Computational Mechanics, 2007, 40, 447-459.	2.2	26
36	An improved 3-D brick Cosserat point element for irregular shaped elements. Computational Mechanics, 2007, 40, 979-1004.	2.2	22

#	Article	IF	CITATIONS
37	Effect of the nonlinear pre-buckling state on the bifurcation point of conical shells. International Journal of Solids and Structures, 2006, 43, 2146-2159.	1.3	21
38	Postbuckling of Laminated Cylindrical Shells in Different Formulations. AIAA Journal, 2005, 43, 1117-1123.	1.5	19
39	FREE VIBRATIONS OF NON-HOMOGENEOUS CIRCULAR AND ANNULAR MEMBRANES. Journal of Sound and Vibration, 2001, 240, 409-429.	2.1	39