Nanna B Hartmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2606127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 2008, 17, 372-386.	1.1	1,459
2	Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environmental Science & amp; Technology, 2019, 53, 1039-1047.	4.6	1,322
3	Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology, 2008, 17, 387-395.	1.1	655
4	Microplastics as vectors for environmental contaminants: Exploring sorption, desorption, and transfer to biota. Integrated Environmental Assessment and Management, 2017, 13, 488-493.	1.6	443
5	Ingestion of micro- and nanoplastics in Daphnia magna – Quantification of body burdens and assessment of feeding rates and reproduction. Environmental Pollution, 2017, 228, 398-407.	3.7	387
6	A critical perspective on early communications concerning human health aspects of microplastics. Science of the Total Environment, 2018, 626, 720-726.	3.9	367
7	Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquatic Toxicology, 2008, 86, 379-387.	1.9	341
8	Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off?. Journal of Contaminant Hydrology, 2010, 118, 165-183.	1.6	333
9	The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquatic Toxicology, 2017, 183, 11-20.	1.9	298
10	Algal testing of titanium dioxide nanoparticles—Testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology, 2010, 269, 190-197.	2.0	273
11	Adapting OECD Aquatic Toxicity Tests for Use with Manufactured Nanomaterials: Key Issues and Consensus Recommendations. Environmental Science & Technology, 2015, 49, 9532-9547.	4.6	153
12	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	15.6	149
13	Comprehensive In Vitro Toxicity Testing of a Panel of Representative Oxide Nanomaterials: First Steps towards an Intelligent Testing Strategy. PLoS ONE, 2015, 10, e0127174.	1.1	136
14	When Fluorescence Is not a Particle: The Tissue Translocation of Microplastics in <i>Daphnia magna</i> Seems an Artifact. Environmental Toxicology and Chemistry, 2019, 38, 1495-1503.	2.2	126
15	ITS-NANO - Prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. Particle and Fibre Toxicology, 2014, 11, 9.	2.8	124
16	Techniques and Protocols for Dispersing Nanoparticle Powders in Aqueous Media—Is there a Rationale for Harmonization?. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2015, 18, 299-326.	2.9	114
17	Sorption of fluorescent polystyrene microplastic particles to edible seaweed Fucus vesiculosus. Journal of Applied Phycology, 2018, 30, 2923-2927.	1.5	113
18	Aquatic Ecotoxicity Testing of Nanoparticles—The Quest To Disclose Nanoparticle Effects. Angewandte Chemie - International Edition, 2016, 55, 15224-15239.	7.2	105

#	Article	IF	CITATIONS
19	The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with <i>Daphnia magna</i> . Environmental Toxicology and Chemistry, 2015, 34, 497-506.	2.2	101
20	From macro- to microplastics - Analysis of EU regulation along the life cycle of plastic bags. Environmental Pollution, 2017, 224, 289-299.	3.7	90
21	Ingestion and effects of micro- and nanoplastics in blue mussel (Mytilus edulis) larvae. Marine Pollution Bulletin, 2019, 140, 423-430.	2.3	79
22	The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna. Aquatic Toxicology, 2012, 118-119, 1-8.	1.9	78
23	Setting the limits for engineered nanoparticles in European surface waters – are current approaches appropriate?. Journal of Environmental Monitoring, 2009, 11, 1774.	2.1	67
24	Influence of pH and media composition on suspension stability of silver, zinc oxide, and titanium dioxide nanoparticles and immobilization of Daphnia magna under guideline testing conditions. Ecotoxicology and Environmental Safety, 2016, 127, 144-152.	2.9	66
25	Environmental exposure assessment framework for nanoparticles in solid waste. Journal of Nanoparticle Research, 2014, 16, 2394.	0.8	64
26	The challenges of testing metal and metal oxide nanoparticles in algal bioassays: titanium dioxide and gold nanoparticles as case studies. Nanotoxicology, 2013, 7, 1082-1094.	1.6	62
27	Uptake and depuration of gold nanoparticles in Daphnia magna. Ecotoxicology, 2014, 23, 1172-1183.	1.1	60
28	The nano cocktail: Ecotoxicological effects of engineered nanoparticles in chemical mixtures. Integrated Environmental Assessment and Management, 2010, 6, 311-313.	1.6	52
29	NanoCRED: A transparent framework to assess the regulatory adequacy of ecotoxicity data for nanomaterials – Relevance and reliability revisited. NanoImpact, 2017, 6, 81-89.	2.4	45
30	The fate of microplastics during uptake and depuration phases in a blue mussel exposure system. Environmental Toxicology and Chemistry, 2019, 38, 99-105.	2.2	44
31	Quality of nanoplastics and microplastics ecotoxicity studies: Refining quality criteria for nanomaterial studies. Journal of Hazardous Materials, 2021, 415, 125751.	6.5	44
32	EU Regulation of Nanobiocides: Challenges in Implementing the Biocidal Product Regulation (BPR). Nanomaterials, 2016, 6, 33.	1.9	42
33	A nationwide assessment of plastic pollution in the Danish realm using citizen science. Scientific Reports, 2020, 10, 17773.	1.6	41
34	Aquatic Ecotoxicity of Microplastics and Nanoplastics: Lessons Learned from Engineered Nanomaterials. Handbook of Environmental Chemistry, 2018, , 25-49.	0.2	38
35	A unified framework for nanosafety is needed. Nano Today, 2014, 9, 546-549.	6.2	32
36	Response to the Letter to the Editor Regarding Our Feature "Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris― Environmental Science & Technology, 2019, 53, 4678-4679.	4.6	25

#	Article	IF	CITATIONS
37	Revising REACH guidance on information requirements and chemical safety assessment for engineered nanomaterials for aquatic ecotoxicity endpoints: recommendations from the EnvNano project. Environmental Sciences Europe, 2017, 29, 14.	2.6	24
38	Comparison of the effects of different protocols on the particle size distribution of TiO2 dispersions. Particuology, 2015, 19, 35-44.	2.0	23
39	A Study of Microplastic Particles in Danish Tap Water. Water (Switzerland), 2021, 13, 2097.	1.2	21
40	Nanoparticle ecotoxicity—physical and/or chemical effects?. Integrated Environmental Assessment and Management, 2015, 11, 722-724.	1.6	18
41	Accelerated Weathering Increases the Release of Toxic Leachates from Microplastic Particles as Demonstrated through Altered Toxicity to the Green Algae Raphidocelis subcapitata. Toxics, 2021, 9, 185.	1.6	18
42	Degradability of aged aquatic suspensions of C60 nanoparticles. Environmental Pollution, 2011, 159, 3134-3137.	3.7	17
43	A call for action: Improve reporting of research studies to increase the scientific basis for regulatory decisionâ€making. Journal of Applied Toxicology, 2018, 38, 783-785.	1.4	15
44	A certain shade of green: Can algal pigments reveal shading effects of nanoparticles?. Integrated Environmental Assessment and Management, 2016, 12, 200-202.	1.6	14
45	Reuse of Water in Laundry Applications with Micro- and Ultrafiltration Ceramic Membrane. Membranes, 2022, 12, 223.	1.4	12
46	COST Action PRIORITY: An EU Perspective on Micro- and Nanoplastics as Global Issues. Microplastics, 2022, 1, 282-290.	1.6	12
47	Balancing scientific tensions. Nature Nanotechnology, 2014, 9, 870-870.	15.6	9
48	Separating toxicity and shading in algal growth inhibition tests of nanomaterials and colored substances. Nanotoxicology, 2022, 16, 265-275.	1.6	3
49	How fast, how far: Diversification and adoption of novel methods in aquatic microplastic monitoring. Environmental Pollution, 2021, 291, 118174.	3.7	1
50	A Message in a Bottle From the North Pole–How Plastic Pollutes the Arctic Ocean. Frontiers for Young Minds, 0, 9, .	0.8	0