
Maria de Jesús Perea-Flores

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2606004/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical and Microstructural Characterization of Vanilla Waste Compounds (Vanilla planifolia,) Tj ETQq1 1 0.7	784314 rgB 1.8 rgB	T /Qverlock 1
2	Modification by lipophilic substitution of Mexican Oxalis tuberosa starch and its effect on functional and microstructural properties. Journal of Food Measurement and Characterization, 2022, 16, 1062-1072.	1.6	3
3	Compound distribution, structural analysis and nanomechanical properties of nanofibers loaded with high-oleic palm oil nanoemulsions for packaging application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128148.	2.3	1
4	Characterization of the hierarchical architecture and micromechanical properties of walnut shell (Juglans regia L.). Journal of the Mechanical Behavior of Biomedical Materials, 2022, 130, 105190.	1.5	5
5	Influence of drying method on the functional and microstructural properties of starch from Oxalis tuberosa. Journal of Food Measurement and Characterization, 2022, 16, 3660-3669.	1.6	2
6	Phenolic compounds profile by UPLC-ESI-MS in black beans and its distribution in the seed coat during storage. Food Chemistry, 2022, 395, 133638.	4.2	5
7	Physicochemical, structural and nanomechanical study elucidating the differences in firmness among four apple cultivars. Postharvest Biology and Technology, 2021, 171, 111342.	2.9	17
8	Study of cellular architecture and micromechanical properties of cuajilote fruits (Parmentiera) Tj ETQq0 0 0 rg	BT /Qverloc	k 19 Tf 50 46
9	Bean phenolic compound changes during processing: Chemical interactions and identification. Journal of Food Science, 2021, 86, 643-655.	1.5	14
10	An overview of instrumented indentation technique for the study of micromechanical properties in food: A case study on bean seed coat. Biosystems Engineering, 2021, 204, 377-385.	1.9	9
11	Cladodes: Chemical and structural properties, biological activity, and polyphenols profile. Food Science and Nutrition, 2021, 9, 4007-4017.	1.5	7
12	Liposomes Loaded with Unsaponifiable Matter from Amaranthus hypochondriacus as a Source of Squalene and Carrying Soybean Lunasin Inhibited Melanoma Cells. Nanomaterials, 2021, 11, 1960.	1.9	4
13	An overview of the emerging trends of the Salicornia L. genus as a sustainable crop. Environmental and Experimental Botany, 2021, 191, 104606.	2.0	49
14	In-vitro digestion of whey protein- and soy lecithin-stabilized High Oleic Palm Oil emulsions. Journal of Food Engineering, 2020, 278, 109918.	2.7	18
15	<p>Development, Characterization and Use of Liposomes as Amphipathic Transporters of Bioactive Compounds for Melanoma Treatment and Reduction of Skin Inflammation: A Review</p> . International Journal of Nanomedicine, 2020, Volume 15, 7627-7650.	3.3	30

16	Microencapsulation of Vanilla Oleoresin (V. planifolia Andrews) by Complex Coacervation and Spray Drying: Physicochemical and Microstructural Characterization. Foods, 2020, 9, 1375.	1.9	20
17	Insight of Polyphenol Oxidase Enzyme Inhibition and Total Polyphenol Recovery from Cocoa Beans. Antioxidants, 2020, 9, 458.	2.2	12

 Physicochemical, functional and structural characterization of Mexican Oxalis tuberosa starch modified by cross-linking. Journal of Food Measurement and Characterization, 2019, 13, 2862-2870.
1.6 9

#	Article	IF	CITATIONS
19	Effect of the extraction by thermosonication on castor oil quality and the microstructure of its residual cake. Industrial Crops and Products, 2019, 141, 111760.	2.5	16
20	Effect of sodium cinnamate, coumarate, caffeate and ferulate mixtures on the viability, morphometry and ultrastructure of lactic-acid bacteria and Listeria monocytogenes. LWT - Food Science and Technology, 2019, 112, 108240.	2.5	3
21	Technological and Structural Properties of Oat Cookies Incorporated with Fructans (Agave tequilana) Tj ETQq1	1 0.784314 1.4	l rgBT /Overic
22	Detection ofBrucella abortusby a platform functionalized with protein A and specific antibodies IgG. Microscopy Research and Technique, 2019, 82, 586-595.	1.2	7
23	Characterization of the micro and nanostructure of the candelilla wax organogels crystal networks. Food Structure, 2018, 16, 1-7.	2.3	38
24	Chemical components distribution and morphology of microcapsules of paprika oleoresin by microscopy and spectroscopy. Food Hydrocolloids, 2018, 81, 6-14.	5.6	27
25	Starch and antioxidant compound release during in vitro gastrointestinal digestion of gluten-free pasta. Food Chemistry, 2018, 263, 201-207.	4.2	24
26	Physicochemical characteristics of seeds from wild and cultivated castor bean plants (Ricinus) Tj ETQq0 0 0 rgB	[/Oyerlock	19 Tf 50 462
27	Evaluation of physical, chemical, microstructural and micromechanical properties of nopal spines (Opuntia ficus-indica). Industrial Crops and Products, 2018, 123, 707-718.	2.5	16
28	Evaluation of the ripening stages of apple (Golden Delicious) by means of computer vision system. Biosystems Engineering, 2017, 159, 46-58.	1.9	97
29	Influence of Milk Whey on High-Oleic Palm Oil Nanoemulsions: Powder Production, Physical and Release Properties. Food Biophysics, 2017, 12, 439-450.	1.4	8
30	Effect of borojo (<i>Borojoa patinoi</i> Cuatrecasas) threeâ€phase composition and gum arabic on the glass transition temperature. Journal of the Science of Food and Agriculture, 2016, 96, 1027-1036.	1.7	3
31	Production of high-oleic palm oil nanoemulsions by high-shear homogenization (microfluidization). Innovative Food Science and Emerging Technologies, 2016, 35, 75-85.	2.7	70
32	Food Nano- and Microconjugated Systems: The Case of Albumin–Capsaicin. Food Engineering Series, 2015, , 187-203.	0.3	1
33	Tools for the Study of Nanostructures. Food Engineering Series, 2015, , 5-38.	0.3	0
34	Halotolerance and Survival Kinetics of Lactic Acid Bacteria Isolated from Jalapeño Pepper (<i>Capsicum annuum</i> L.) Fermentation. Journal of Food Science, 2014, 79, M1545-53.	1.5	21
35	Evaluation of Agave Fiber Delignification by Means of Microscopy Techniques and Image Analysis. Microscopy and Microanalysis, 2014, 20, 1436-1446.	0.2	13
36	Computer Vision System Applied to Classification of "Manila―Mangoes During Ripening Process. Food and Bioprocess Technology, 2014, 7, 1183-1194.	2.6	69

#	Article	IF	CITATIONS
37	Barrier, mechanical and morpho-structural properties of gelatin films with carbon nanotubes addition. Journal of Food Engineering, 2014, 120, 223-232.	2.7	29
38	Effects of microfluidisation process on the amounts and distribution of encapsulated and non-encapsulated α-tocopherol microcapsules obtained by spray drying. Food Research International, 2014, 63, 2-8.	2.9	25
39	Effect ofHeterotheca inuloidesessential oil on rat cytoskeleton articular chondrocytes. Natural Product Research, 2013, 27, 2347-2350.	1.0	2
40	Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Industrial Crops and Products, 2012, 38, 64-71.	2.5	103
41	Microscopy techniques and image analysis for evaluation of some chemical and physical properties and morphological features for seeds of the castor oil plant (Ricinus communis). Industrial Crops and Products, 2011, 34, 1057-1065.	2.5	36
42	Image Processing Applied to Classification of Avocado Variety Hass (Persea americana Mill.) During the Ripening Process. Food and Bioprocess Technology, 2011, 4, 1307-1313.	2.6	53
43	Chemical and microstructural characterization of three seaweed species from two locations of Veracruz, Mexico. Food Science and Technology, 0, 42, .	0.8	2