
Jamie C Dewitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2605245/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)?. Environmental Science & Technology, 2017, 51, 2508-2518.	10.0	971
2	Per―and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environmental Toxicology and Chemistry, 2021, 40, 606-630.	4.3	697
3	An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environmental Sciences: Processes and Impacts, 2020, 22, 2345-2373.	3.5	632
4	Immunotoxicity of Perfluorinated Compounds: Recent Developments. Toxicologic Pathology, 2012, 40, 300-311.	1.8	334
5	Scientific Basis for Managing PFAS as a Chemical Class. Environmental Science and Technology Letters, 2020, 7, 532-543.	8.7	278
6	Immunotoxicity of Perfluorooctanoic Acid and Perfluorooctane Sulfonate and the Role of Peroxisome Proliferator-Activated Receptor Alpha. Critical Reviews in Toxicology, 2009, 39, 76-94.	3.9	230
7	Recently Detected Drinking Water Contaminants: GenX and Other Per―and Polyfluoroalkyl Ether Acids. Journal - American Water Works Association, 2018, 110, 13-28.	0.3	186
8	Perfluorooctanoic Acid–Induced Immunomodulation in Adult C57BL/6J or C57BL/6N Female Mice. Environmental Health Perspectives, 2008, 116, 644-650.	6.0	171
9	Perfluorinated compounds: Emerging POPs with potential immunotoxicity. Toxicology Letters, 2014, 230, 263-270.	0.8	154
10	Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS?. Environmental Science & Technology, 2020, 54, 12820-12828.	10.0	149
11	Exposure to per-fluoroalkyl and polyfluoroalkyl substances leads to immunotoxicity: epidemiological and toxicological evidence. Journal of Exposure Science and Environmental Epidemiology, 2019, 29, 148-156.	3.9	144
12	Differences in the carcinogenic evaluation of glyphosate between the International Agency for Research on Cancer (IARC) and the European Food Safety Authority (EFSA). Journal of Epidemiology and Community Health, 2016, 70, 741-745.	3.7	138
13	Strategies for grouping per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health. Environmental Sciences: Processes and Impacts, 2020, 22, 1444-1460.	3.5	126
14	The concept of essential use for determining when uses of PFASs can be phased out. Environmental Sciences: Processes and Impacts, 2019, 21, 1803-1815.	3.5	125
15	The high persistence of PFAS is sufficient for their management as a chemical class. Environmental Sciences: Processes and Impacts, 2020, 22, 2307-2312.	3.5	125
16	Measurement of Novel, Drinking Water-Associated PFAS in Blood from Adults and Children in Wilmington, North Carolina. Environmental Health Perspectives, 2020, 128, 77005.	6.0	118
17	Environmental risk factors for autism. Emerging Health Threats Journal, 2011, 4, 7111.	3.0	94
18	Zürich Statement on Future Actions on Per- and Polyfluoroalkyl Substances (PFASs). Environmental Health Perspectives, 2018, 126, 84502.	6.0	91

JAMIE C DEWITT

#	Article	IF	CITATIONS
19	Breaking Patterns of Environmentally Influenced Disease for Health Risk Reduction: Immune Perspectives. Environmental Health Perspectives, 2010, 118, 1091-1099.	6.0	81
20	Developmental toxicity in white leghorn chickens following in ovo exposure to perfluorooctane sulfonate (PFOS). Reproductive Toxicology, 2009, 27, 307-318.	2.9	73
21	Perfluorooctanoic acid induces developmental cardiotoxicity in chicken embryos and hatchlings. Toxicology, 2012, 293, 97-106.	4.2	62
22	Suppression of antigen-specific antibody responses in mice exposed to perfluorooctanoic acid: Role of PPAR α and T- and B-cell targeting. Journal of Immunotoxicology, 2016, 13, 38-45.	1.7	59
23	Suppression of Humoral Immunity by Perfluorooctanoic Acid is Independent of Elevated Serum Corticosterone Concentration in Mice. Toxicological Sciences, 2009, 109, 106-112.	3.1	49
24	Current Status of Developmental Immunotoxicity. Toxicologic Pathology, 2012, 40, 230-236.	1.8	49
25	Dosimetric Anchoring of In Vivo and In Vitro Studies for Perfluorooctanoate and Perfluorooctanesulfonate. Toxicological Sciences, 2013, 136, 308-327.	3.1	44
26	Bioaccumulation of Novel Per- and Polyfluoroalkyl Substances in Mice Dosed with an Aqueous Film-Forming Foam. Environmental Science & Technology, 2020, 54, 5700-5709.	10.0	44
27	Assessment of recent developmental immunotoxicity studies with bisphenol A in the context of the 2015 EFSA t-TDI. Reproductive Toxicology, 2016, 65, 448-456.	2.9	40
28	Immune function in female B ₆ C ₃ F ₁ mice is modulated by DE-71, a commercial polybrominated diphenyl ether mixture. Journal of Immunotoxicology, 2012, 9, 96-107.	1.7	32
29	Information Requirements under the Essential-Use Concept: PFAS Case Studies. Environmental Science & Technology, 2022, 56, 6232-6242.	10.0	32
30	Widening the Lens on PFASs: Direct Human Exposure to Perfluoroalkyl Acid Precursors (pre-PFAAs). Environmental Science & Technology, 2022, 56, 6004-6013.	10.0	31
31	EXTERNAL HEART DEFORMITIES IN PASSERINE BIRDS EXPOSED TO ENVIRONMENTAL MIXTURES OF POLYCHLORINATED BIPHENYLS DURING DEVELOPMENT. Environmental Toxicology and Chemistry, 2006, 25, 541.	4.3	30
32	Evaluation of the immunomodulatory effects of 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate in C57BL/6 mice. Toxicological Sciences, 2017, , kfw251.	3.1	24
33	Perfluorooctanoic Acid Induced-Developmental Cardiotoxicity: Are Peroxisome Proliferator Activated Receptor α (PPARα) and Bone Morphorgenic Protein 2 (BMP2) Pathways Involved?. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2013, 76, 635-650.	2.3	23
34	Endocrine disruptors and the developing immune system. Current Opinion in Toxicology, 2018, 10, 31-36.	5.0	23
35	Immunotoxicity of Per- and Polyfluoroalkyl Substances: Insights into Short-Chain PFAS Exposure. Toxics, 2021, 9, 100.	3.7	22
36	Environmental Toxicity Studies Using Chickens as Surrogates for Wildlife: Effects of Injection Day. Archives of Environmental Contamination and Toxicology, 2005, 48, 270-277.	4.1	20

JAMIE C DEWITT

#	Article	IF	CITATIONS
37	Immunotoxicity of an Electrochemically Fluorinated Aqueous Film-Forming Foam. Toxicological Sciences, 2020, 178, 104-114.	3.1	20
38	Demographic, Reproductive, and Dietary Determinants of Perfluorooctane Sulfonic (PFOS) and Perfluorooctanoic Acid (PFOA) Concentrations in Human Colostrum. Environmental Science & Technology, 2016, 50, 7152-7162.	10.0	19
39	Associating Changes in the Immune System with Clinical Diseases for Interpretation in Risk Assessment. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2016, 67, 18.1.1-18.1.22.	1.1	19
40	Environmental Toxicity Studies Using Chickens as Surrogates for Wildlife: Effects of Vehicle Volume. Archives of Environmental Contamination and Toxicology, 2005, 48, 260-269.	4.1	18
41	Does developmental exposure to perfluorooctanoic acid (PFOA) induce immunopathologies commonly observed in neurodevelopmental disorders?. NeuroToxicology, 2012, 33, 1491-1498.	3.0	18
42	Health effects from exposure to atmospheric mineral dust near Las Vegas, NV, USA. Toxicology Reports, 2016, 3, 785-795.	3.3	17
43	Addressing Urgent Questions for PFAS in the 21st Century. Environmental Science & Technology, 2021, 55, 12755-12765.	10.0	17
44	Finding essentiality feasible: common questions and misinterpretations concerning the "essential-use― concept. Environmental Sciences: Processes and Impacts, 2021, 23, 1079-1087.	3.5	16
45	Developmental Immunotoxicity (DIT): Assays for Evaluating Effects of Exogenous Agents on Development of the Immune System. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2012, 51, Unit 18.15.	1.1	14
46	Immunotoxicological and neurotoxicological profile of health effects following subacute exposure to geogenic dust from sand dunes at the Nellis Dunes Recreation Area, Las Vegas, NV. Toxicology and Applied Pharmacology, 2016, 291, 1-12.	2.8	14
47	Immune Responses in Sprague–Dawley Rats Exposed to Dibutyltin Dichloride in Drinking Water as Adults. Journal of Immunotoxicology, 2005, 2, 151-160.	1.7	11
48	Immune function is not impaired in Sprague–Dawley rats exposed to dimethyltin dichloride (DMTC) during development or adulthood. Toxicology, 2007, 232, 303-310.	4.2	10
49	Are developmentally exposed C57BL/6 mice insensitive to suppression of TDAR by PFOA?. Journal of Immunotoxicology, 2010, 7, 344-349.	1.7	10
50	Health effects following subacute exposure to geogenic dusts from arsenic-rich sediment at the Nellis Dunes Recreation Area, Las Vegas, NV. Toxicology and Applied Pharmacology, 2016, 304, 79-89.	2.8	10
51	Perfluorooctanoic acidâ€induced toxicity in primary cultures of chicken embryo cardiomyocytes. Environmental Toxicology, 2016, 31, 1580-1590.	4.0	10
52	Cross-sectional associations between serum PFASs and inflammatory biomarkers in a population exposed to AFFF-contaminated drinking water. International Journal of Hygiene and Environmental Health, 2022, 240, 113905.	4.3	10
53	Fatty acid metabolism in neonatal chickens (Gallus domesticus) treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126) in ovo. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2003, 136, 73-84.	2.6	7
54	Health effects following subacute exposure to geogenic dust collected from active drainage surfaces (Nellis Dunes Recreation Area, Las Vegas, NV). Toxicology Reports, 2017, 4, 19-31.	3.3	7

JAMIE C DEWITT

#	Article	IF	CITATIONS
55	Official health communications are failing PFAS-contaminated communities. Environmental Health, 2022, 21, 51.	4.0	7
56	A single dose of trichloroethylene given during development does not substantially alter markers of neuroinflammation in brains of adult mice. Journal of Immunotoxicology, 2017, 14, 95-102.	1.7	6
57	Nevada desert dust with heavy metals suppresses IgM antibody production. Toxicology Reports, 2018, 5, 258-269.	3.3	6
58	Response to "Comment on Scientific Basis for Managing PFAS as a Chemical Class― Environmental Science and Technology Letters, 2021, 8, 195-197.	8.7	6
59	Developmental Exposure to 1.0 or 2.5 mg/kg of Dibutyltin Dichloride Does Not Impair Immune Function in Sprague-Dawley Rats. Journal of Immunotoxicology, 2006, 3, 245-252.	1.7	4
60	Serum Supplementation Modulates the Effects of Dibutyltin on Human Natural Killer Cell Function. Toxicological Sciences, 2008, 104, 312-319.	3.1	3
61	An Organotin Mixture Found in Polyvinyl Chloride (PVC) Pipe is not Immunotoxic to Adult Sprague-Dawley Rats. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 276-282.	2.3	3
62	Response to "Theoretical aspects of autism: Causes—A review―by Ratajczak, HV (Journal of) Tj ETQq0 0 0	rgBT /Ove 1.7	rlogk 10 Tf 5
63	Developmental Immunotoxicity (DIT) Testing: Current Recommendations and the Future of DIT Testing. Methods in Molecular Biology, 2018, 1803, 47-56.	0.9	3
64	Reducing the Prevalence of Immune-Based Chronic Disease. Molecular and Integrative Toxicology, 2012, , 419-440.	0.5	1
65	Current Issues in Developmental Immunotoxicity. Molecular and Integrative Toxicology, 2017, , 601-618.	0.5	1

66Using Chicken Embryo as a Powerful Tool in Assessment of Developmental Cardiotoxicities. Journal of
Visualized Experiments, 2021, , .0.30

Postnatal Immune Dysfunction and Its Impact on Growth Parameters. , 2012, , 741-755.