Alessandra Rossini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2605097/publications.pdf

Version: 2024-02-01

46 papers

1,254 citations

361296 20 h-index 35 g-index

49 all docs 49 docs citations

49 times ranked 2494 citing authors

#	Article	IF	CITATIONS
1	Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovascular Research, 2011, 89, 650-660.	1.8	114
2	HMGB1-stimulated human primary cardiac fibroblasts exert a paracrine action on human and murine cardiac stem cells. Journal of Molecular and Cellular Cardiology, 2008, 44, 683-693.	0.9	97
3	Cardiac mesenchymal stromal cells are a source of adipocytes in arrhythmogenic cardiomyopathy. European Heart Journal, 2016, 37, 1835-1846.	1.0	83
4	Alginate Formulations: Current Developments in the Race for Hydrogel-Based Cardiac Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 414.	2.0	69
5	The Histone Acetylase Activator Pentadecylidenemalonate 1b Rescues Proliferation and Differentiation in the Human Cardiac Mesenchymal Cells of Type 2 Diabetic Patients. Diabetes, 2014, 63, 2132-2147.	0.3	66
6	Functional diversity of electrogenic Na+-HCO3â° cotransport in ventricular myocytes from rat, rabbit and guinea pig. Journal of Physiology, 2005, 562, 455-475.	1.3	65
7	The Cooperative Health Research in South Tyrol (CHRIS) study: rationale, objectives, and preliminary results. Journal of Translational Medicine, 2015, 13, 348.	1.8	63
8	Modelling intracellular H+ ion diffusion. Progress in Biophysics and Molecular Biology, 2003, 83, 69-100.	1.4	55
9	Intracellular proton mobility and buffering power in cardiac ventricular myocytes from rat, rabbit, and guinea pig. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1236-H1246.	1.5	51
10	pH-Regulated Na+ Influx into the Mammalian Ventricular Myocyte: The Relative Role of Na+-H+ Exchange and Na+-HCO3- Co-Transport. Journal of Cardiovascular Electrophysiology, 2006, 17, S134-S140.	0.8	44
11	microRNAs and Cardiac Cell Fate. Cells, 2014, 3, 802-823.	1.8	38
12	H + Ion Activation and Inactivation of the Ventricular Gap Junction. Circulation Research, 2007, 100, 1045-1054.	2.0	36
13	The Impact of CRISPR/Cas9 Technology on Cardiac Research: From Disease Modelling to Therapeutic Approaches. Stem Cells International, 2017, 2017, 1-13.	1.2	36
14	Effects of smoking status, history and intensity on heart rate variability in the general population: The CHRIS study. PLoS ONE, 2019, 14, e0215053.	1.1	33
15	Subchronic exposure to titanium dioxide nanoparticles modifies cardiac structure and performance in spontaneously hypertensive rats. Particle and Fibre Toxicology, 2019, 16, 25.	2.8	32
16	Proton Permeation Through the Myocardial Gap Junction. Circulation Research, 2003, 93, 726-735.	2.0	30
17	In Vitro Epigenetic Reprogramming of Human Cardiac Mesenchymal Stromal Cells into Functionally Competent Cardiovascular Precursors. PLoS ONE, 2012, 7, e51694.	1.1	30
18	Are Requirements to Deposit Data in Research Repositories Compatible With the European Union's General Data Protection Regulation?. Annals of Internal Medicine, 2019, 170, 332.	2.0	27

#	Article	IF	CITATIONS
19	Human chorionic villus mesenchymal stromal cells reveal strong endothelial conversion properties. Differentiation, 2012, 83, 260-270.	1.0	26
20	High-resolution X-ray microtomography for three-dimensional imaging of cardiac progenitor cell homing in infarcted rat hearts. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e168-e178.	1.3	23
21	The arrhythmogenic cardiomyopathy-specific coding and non-coding transcriptome in human cardiac stromal cells. BMC Genomics, 2018, 19, 491.	1.2	21
22	HDAC Inhibition Improves the Sarcoendoplasmic Reticulum Ca2+-ATPase Activity in Cardiac Myocytes. International Journal of Molecular Sciences, 2018, 19, 419.	1.8	21
23	Silencing of CCR4-NOT complex subunits affect heart structure and function. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	18
24	A detailed characterization of the hyperpolarization-activated "funny―current (If) in human-induced pluripotent stem cell (iPSC)–derived cardiomyocytes with pacemaker activity. Pflugers Archiv European Journal of Physiology, 2021, 473, 1009-1021.	1.3	18
25	Generation of Induced Pluripotent Stem Cells from Frozen Buffy Coats using Non-integrating Episomal Plasmids. Journal of Visualized Experiments, 2015, , e52885.	0.2	17
26	Oxidized LDLâ€dependent pathway as new pathogenic trigger in arrhythmogenic cardiomyopathy. EMBO Molecular Medicine, 2021, 13, e14365.	3.3	16
27	Acetylation mediates Cx43 reduction caused by electrical stimulation. Journal of Molecular and Cellular Cardiology, 2015, 87, 54-64.	0.9	15
28	The Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid (SAHA) Restores Cardiomyocyte Contractility in a Rat Model of Early Diabetes. International Journal of Molecular Sciences, 2019, 20, 1873.	1.8	15
29	KCND3 potassium channel gene variant confers susceptibility to electrocardiographic early repolarization pattern. JCI Insight, 2019, 4, .	2.3	15
30	Exploring digenic inheritance in arrhythmogenic cardiomyopathy. BMC Medical Genetics, 2017, 18, 145.	2.1	14
31	Higher cardiogenic potential of iPSCs derived from cardiac versus skin stromal cells. Frontiers in Bioscience - Landmark, 2016, 21, 719-743.	3.0	13
32	Lipidomics, Atrial Conduction, and Body Mass Index. Circulation Genomic and Precision Medicine, 2019, 12, e002384.	1.6	9
33	Anacardic acid and thyroid hormone enhance cardiomyocytes production from undifferentiated mouse ES cells along functionally distinct pathways. Endocrine, 2016, 53, 681-688.	1.1	7
34	Microbiota, type 2 diabetes and non-alcoholic fatty liver disease: protocol of an observational study. Journal of Translational Medicine, 2019, 17, 408.	1.8	7
35	Syngeneic Cardiac and Bone Marrow Stromal Cells Display Tissue-Specific microRNA Signatures and microRNA Subsets Restricted to Diverse Differentiation Processes. PLoS ONE, 2014, 9, e107269.	1.1	6
36	Metabolic Signature of Arrhythmogenic Cardiomyopathy. Metabolites, 2021, 11, 195.	1.3	5

3

#	Article	lF	CITATIONS
37	Genetic and Metabolic Determinants of Atrial Fibrillation in a General Population Sample: The CHRIS Study. Biomolecules, 2021, 11, 1663.	1.8	5
38	Generation of human induced pluripotent stem cells (EURACi001-A, EURACi002-A, EURACi003-A) from peripheral blood mononuclear cells of three patients carrying mutations in the CAV3 gene. Stem Cell Research, 2018, 27, 25-29.	0.3	4
39	GCN5 contributes to intracellular lipid accumulation in human primary cardiac stromal cells from patients affected by Arrhythmogenic cardiomyopathy. Journal of Cellular and Molecular Medicine, 2022, 26, 3687-3701.	1.6	3
40	Phase-contrast microtomography: are the tracers necessary for stem cell tracking in infarcted hearts?. Biomedical Physics and Engineering Express, 2018, 4, 055008.	0.6	2
41	Derivation of human induced pluripotent stem cell line EURACi004-A from skin fibroblasts of a patient with Arrhythmogenic Cardiomyopathy carrying the heterozygous PKP2 mutation c.2569_3018del50. Stem Cell Research, 2018, 32, 78-82.	0.3	2
42	MicroRNAs in Cardiac Regeneration. , 2015, , 917-942.		1
43	Generation and characterization of three human induced pluripotent stem cell lines (EURACi007-A,) Tj ETQq1 1 C cardiomyopathy (ACM) carrying the plakophillin2 p.N346Lfs*12 mutation. Stem Cell Research, 2021, 55, 102466.	0.784314 0.3	rgBT /Overlo
44	Generation of human induced pluripotent stem cell line EURACi006-A and its isogenic gene-corrected line EURACi006-A-1 from an arrhythmogenic cardiomyopathy patient carrying the c.1643delG PKP2 mutation. Stem Cell Research, 2021, 54, 102426.	0.3	0
45	Abstract 1015: Human Heart Contains A Stem Cell Population With Mesenchymal Properties. Circulation, 2007, 116, .	1.6	0
46	Abstract 13799: Electrical Pacing Inhibits Gap Junction-Mediated Cardiac Cell -Cell Communication by Promoting Cx43-Acetylation. Circulation, 2014, 130, .	1.6	O