
David Montero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2604491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sex differences in cardiorespiratory fitness are explained by blood volume and oxygen carrying capacity. Cardiovascular Research, 2022, 118, 334-343.	3.8	36
2	Blood volume primarily determines orthostatic tolerance in women. Journal of Internal Medicine, 2022, 291, 371-373.	6.0	2
3	Effects of blood withdrawal on cardiac, hemodynamic, and pulmonary responses to a moderate acute workload in healthy middle-aged and older females. Journal of Science and Medicine in Sport, 2022, 25, 198-203.	1.3	2
4	Sex and age interaction in fundamental circulatory volumetric variables at peak working capacity. Biology of Sex Differences, 2022, 13, 1.	4.1	6
5	Sex Differences in Orthostatic Tolerance Are Mainly Explained by Blood Volume and Oxygen Carrying Capacity. , 2022, 4, e0608.		4
6	Blood withdrawal acutely impairs cardiac filling, output and aerobic capacity in proportion to induced hypovolemia in middle-aged and older women. Applied Physiology, Nutrition and Metabolism, 2022, 47, 75-82.	1.9	2
7	Differences in Cardiac Output and Aerobic Capacity Between Sexes Are Explained by Blood Volume and Oxygen Carrying Capacity. Frontiers in Physiology, 2022, 13, 747903.	2.8	6
8	Sex specificity in orthostatic tolerance: the integration of haematological, cardiac, and endocrine factors. European Journal of Preventive Cardiology, 2022, 29, e246-e248.	1.8	3
9	Marked improvements in cardiac function in postmenopausal women exposed to blood withdrawal plus endurance training. Journal of Sports Sciences, 2022, 40, 1609-1617.	2.0	1
10	Five weeks of heat training increases haemoglobin mass in elite cyclists. Experimental Physiology, 2021, 106, 316-327.	2.0	28
11	Female sex-specific curtailment of left ventricular volume and mass in HFpEF patients with high end-diastolic filling pressure. Journal of Human Hypertension, 2021, 35, 296-299.	2.2	8
12	Intravascular albumin loss is strongly associated with plasma volume withdrawal in dialysis patients. Hemodialysis International, 2021, 25, 86-93.	0.9	2
13	Changes in the profile of circulating HDL subfractions in severe obese adolescents following a weight reduction program. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 1586-1593.	2.6	1
14	Blood Oxygen Carrying Capacity Determines Cardiorespiratory Fitness in Middle-Age and Older Women and Men. Medicine and Science in Sports and Exercise, 2021, 53, 2274-2282.	0.4	4
15	Sex dimorphism in cardiac and aerobic capacities: The influence of body composition. Obesity, 2021, 29, 1749-1759.	3.0	11
16	Sex-Specific Effect of Blood Oxygen-Carrying Capacity on Orthostatic Tolerance in Older Individuals. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, , .	3.6	1
17	Body height is inversely associated with left ventricular end-diastolic pressure in heart failure with preserved ejection fraction. European Journal of Preventive Cardiology, 2020, 27, 1116-1118.	1.8	3
18	Effects of hemodialysis on blood volume, macro- and microvascular function. Microvascular Research, 2020, 129, 103958.	2.5	1

#	Article	IF	CITATIONS
19	Relationship between plasma volume and essential blood constituents in patients with heart failure and preserved ejection fraction. Clinical Physiology and Functional Imaging, 2020, 40, 131-138.	1.2	4
20	The Impact of Sex on Left Ventricular Cardiac Adaptations to Endurance Training: a Systematic Review and Meta-analysis. Sports Medicine, 2020, 50, 1501-1513.	6.5	25
21	Unveiling women's powerhouse. Experimental Physiology, 2020, 105, 1060-1062.	2.0	9
22	Reply to Senefeld et al: Comment on "Sex Dimorphism of VO2max Trainability: A Systematic Review and Meta-analysis― Sports Medicine, 2020, 50, 1049-1050.	6.5	0
23	Erythropoietin response to anaemia in heart failure. European Journal of Preventive Cardiology, 2019, 26, 7-17.	1.8	15
24	Glutathione-dependent enzyme activities of peripheral blood mononuclear cells decrease during the winter season compared with the summer in normal-weight and severely obese adolescents. Journal of Physiology and Biochemistry, 2019, 75, 321-327.	3.0	2
25	Skeletal Muscle O2 Diffusion and the Limitation of Aerobic Capacity in Heart Failure: A Clarification. Frontiers in Cardiovascular Medicine, 2019, 6, 78.	2.4	2
26	The role of blood volume in cardiac dysfunction and reduced exercise tolerance in patients with diabetes. Lancet Diabetes and Endocrinology,the, 2019, 7, 807-816.	11.4	14
27	Did you know—why does maximal oxygen uptake increase in humans following endurance exercise training?. Acta Physiologica, 2019, 227, e13371.	3.8	14
28	Sex Dimorphism of VO2max Trainability: A Systematic Review and Meta-analysis. Sports Medicine, 2019, 49, 1949-1956.	6.5	47
29	Ageâ€dependent impairment of the erythropoietin response to reduced central venous pressure in HFpEF patients. Physiological Reports, 2019, 7, e14021.	1.7	1
30	Hypovolemia and reduced hemoglobin mass in patients with heart failure and preserved ejection fraction. Physiological Reports, 2019, 7, e14222.	1.7	6
31	Arterial oxygen content regulates plasma erythropoietin independent of arterial oxygen tension: a blinded crossover study. Kidney International, 2019, 95, 173-177.	5.2	23
32	Sexual dimorphism of substrate utilization: Differences in skeletal muscle mitochondrial volume density and function. Experimental Physiology, 2018, 103, 851-859.	2.0	72
33	Determinants of exercise intolerance in heart failure with preserved ejection fraction: A systematic review and meta-analysis. International Journal of Cardiology, 2018, 254, 224-229.	1.7	11
34	Relationship of loop diuretic use with exercise intolerance in heart failure with preserved ejection fraction. European Heart Journal - Cardiovascular Pharmacotherapy, 2018, 4, 138-141.	3.0	7
35	Effects of Exercise Intensity on Microvascular Function in Obese Adolescents. International Journal of Sports Medicine, 2018, 39, 450-455.	1.7	21
36	Regulation of Red Blood Cell Volume with Exercise Training. , 2018, 9, 149-164.		55

#	Article	IF	CITATIONS
37	Letter by Montero Regarding Article, "Reversing the Cardiac Effects of Sedentary Aging in Middle Age—A Randomized Controlled Trial: Implications for Heart Failure Prevention― Circulation, 2018, 138, 1757-1758.	1.6	0
38	Effect of Beta-blocker Treatment on V˙O2peak in Patients with Heart Failure. Medicine and Science in Sports and Exercise, 2018, 50, 889-896.	0.4	4
39	Reply from David Montero and Carsten Lundby. Journal of Physiology, 2018, 596, 3809-3809.	2.9	0
40	Increased capillary density in skeletal muscle is not associated with impaired insulin sensitivity induced by bed rest in healthy young men. Applied Physiology, Nutrition and Metabolism, 2018, 43, 1334-1340.	1.9	15
41	Refuting the myth of nonâ€response to exercise training: †nonâ€responders' do respond to higher dose of training. Journal of Physiology, 2017, 595, 3377-3387.	2.9	240
42	Reduced arteriovenous oxygen difference in heart failure with preserved ejection fraction patients: Is the muscle oxidative phenotype certainly involved?. European Journal of Preventive Cardiology, 2017, 24, 1157-1160.	1.8	7
43	True Anemia―Red Blood Cell Volume Deficit―in Heart Failure. Circulation: Heart Failure, 2017, 10, .	3.9	16
44	Exercise intolerance in heart failure with preserved ejection fraction: time to scrutinize diuretic therapy?. European Journal of Heart Failure, 2017, 19, 971-973.	7.1	11
45	Erythropoiesis with endurance training: dynamics and mechanisms. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R894-R902.	1.8	68
46	Effect of Exercise on Arterial Stiffness: Is There a Ceiling Effect?. American Journal of Hypertension, 2017, 30, 1069-1072.	2.0	10
47	Erythropoietin on cycling performance. Lancet Haematology,the, 2017, 4, e460-e461.	4.6	3
48	Combined effects of physical inactivity and acute hyperglycemia on arterial distensibility. Vascular Medicine, 2017, 22, 285-291.	1.5	7
49	Red cell volume response to exercise training: Association with aging. Scandinavian Journal of Medicine and Science in Sports, 2017, 27, 674-683.	2.9	21
50	No Improved Performance With Repeated-Sprint Training in Hypoxia Versus Normoxia: A Double-Blind and Crossover Study. International Journal of Sports Physiology and Performance, 2017, 12, 161-167.	2.3	73
51	Brain Perfusion and Arterial Blood Flow Velocity During Prolonged Body Tilting. Aerospace Medicine and Human Performance, 2016, 87, 682-687.	0.4	8
52	Unexplained Anemia in the Elderly: Potential Role of Arterial Stiffness. Frontiers in Physiology, 2016, 7, 485.	2.8	8
53	Response. Medicine and Science in Sports and Exercise, 2016, 48, 764-765.	0.4	0
54	Arterial stiffness is strongly and negatively associated with the total volume of red blood cells. International Journal of Cardiology, 2016, 221, 77-80.	1.7	17

#	Article	IF	CITATIONS
55	Do Distinct Exercise Modalities Have Identical Effects on Arterial Stiffness?. American Journal of Cardiology, 2016, 117, 1030.	1.6	ο
56	Author's Reply to Sani et al.: "Effects of Exercise Training in Hypoxia Versus Normoxia on Vascular Health: Comments on Clinical Importanceâ€â€"Facing Common Misconceptions Concerning Meta-Analysis in Biomedical Research. Sports Medicine, 2016, 46, 1769-1770.	6.5	0
57	Comment on Prior et al. Increased Skeletal Muscle Capillarization Independently Enhances Insulin Sensitivity in Older Adults After Exercise Training and Detraining. Diabetes 2015;64:3386–3395. Diabetes, 2016, 65, e11-e12.	0.6	2
58	Effects of Exercise Training in Hypoxia Versus Normoxia on Vascular Health. Sports Medicine, 2016, 46, 1725-1736.	6.5	32
59	Physical Activity Is Associated With Glucose Tolerance Independent of Microvascular Function: The Maastricht Study. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3324-3332.	3.6	18
60	Endurance training and maximal oxygen consumption with ageing: Role of maximal cardiac output and oxygen extraction. European Journal of Preventive Cardiology, 2016, 23, 733-743.	1.8	39
61	Rebuttal from Carsten Lundby and David Montero. Journal of Physiology, 2015, 593, 3765-3765.	2.9	2
62	Enhanced Performance after Repeated Sprint Training in Hypoxia. Medicine and Science in Sports and Exercise, 2015, 47, 2483.	0.4	5
63	Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training. Journal of Physiology, 2015, 593, 4677-4688.	2.9	137
64	Microvascular Dilator Function in Athletes. Medicine and Science in Sports and Exercise, 2015, 47, 1485-1494.	0.4	34
65	Endurance Training and V˙O2max. Medicine and Science in Sports and Exercise, 2015, 47, 2024-2033.	0.4	82
66	Arterial dilator function in athletes: present and future perspectives. Frontiers in Physiology, 2015, 6, 163.	2.8	3
67	Maximal cardiac output in athletes: Influence of age. European Journal of Preventive Cardiology, 2015, 22, 1588-1600.	1.8	9
68	Arterial stiffness response to exercise training: Unequivocal explanations?. International Journal of Cardiology, 2015, 187, 598-599.	1.7	0
69	Acute Hyperglycemia Impairs Vascular Function in Healthy and Cardiometabolic Diseased Subjects. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2060-2072.	2.4	83
70	The impact of age on vascular smooth muscle function in humans. Journal of Hypertension, 2015, 33, 445-453.	0.5	28
71	The association of cardiorespiratory fitness with endothelial or smooth muscle vasodilator function. European Journal of Preventive Cardiology, 2015, 22, 1200-1211.	1.8	46
72	CrossTalk opposing view: Diffusion limitation of O ₂ from microvessels into muscle does not contribute to the limitation of. Journal of Physiology, 2015, 593, 3759-3761.	2.9	25

#	Article	IF	CITATIONS
73	The Effect of Exercise Training on the Energetic Cost of Cycling. Sports Medicine, 2015, 45, 1603-1618.	6.5	13
74	Effect of combined aerobic and resistance training versus aerobic training on arterial stiffness. International Journal of Cardiology, 2015, 178, 69-76.	1.7	50
75	Flow-Mediated Dilation in Athletes. Medicine and Science in Sports and Exercise, 2014, 46, 2148-2158.	0.4	44
76	Decreased microvascular myogenic response to insulin in severely obese adolescents. Clinical Hemorheology and Microcirculation, 2014, 57, 23-32.	1.7	8
77	Effect of Aerobic Exercise Training on Arterial Stiffness in Obese Populations. Sports Medicine, 2014, 44, 833-843.	6.5	49
78	Effect of antioxidant vitamin supplementation on endothelial function in type 2 diabetes mellitus: a systematic review and metaâ€analysis of randomized controlled trials. Obesity Reviews, 2014, 15, 107-116.	6.5	67
79	The impact of aerobic exercise training on arterial stiffness in pre- and hypertensive subjects: A systematic review and meta-analysis. International Journal of Cardiology, 2014, 173, 361-368.	1.7	69
80	Effects of a Lifestyle Program on Vascular Reactivity in Macro- and Microcirculation in Severely Obese Adolescents. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 1019-1026.	3.6	20
81	Arterial stiffness in obese populations: Is it reduced by aerobic training?. International Journal of Cardiology, 2014, 176, 280-281.	1.7	5
82	Vascular smooth muscle function in type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetologia, 2013, 56, 2122-2133.	6.3	73
83	Effects of Exercise Training on Arterial Function in Type 2 Diabetes Mellitus. Sports Medicine, 2013, 43, 1191-1199.	6.5	50
84	Leg arterial stiffness after weight loss in severely obese adolescents. International Journal of Cardiology, 2013, 168, 1676-1677.	1.7	12
85	The association between dynamical and averaging characterization of LDF skin blood flow: An integrated approach. Microvascular Research, 2013, 89, 159-160.	2.5	2
86	ls Swimming an Alternative to Land-Based Exercise to Prevent Arterial Stiffness?. American Journal of Cardiology, 2013, 112, 307-308.	1.6	3
87	Hemodynamic actions of insulin: beyond the endothelium. Frontiers in Physiology, 2013, 4, 389.	2.8	11
88	Enhanced Conduit Artery Flow-Mediated Dilation in Elite Atheletes. Medicine and Science in Sports and Exercise, 2013, 45, 1219.	0.4	6