Lyudmila M Bronstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2604480/publications.pdf

Version: 2024-02-01

		8	31743	7	76769
109	5,841		39		74
papers	citations		h-index		g-index
111	111		111		6447
all docs	docs citations		times ranked		citing authors

#	Article	IF	CITATIONS
1	Larger pores dramatically enhance activity of an immobilized enzyme in mesoporous magnetic silica. Microporous and Mesoporous Materials, 2022, 341, 112092.	2.2	4
2	Surface interactions with the metal oxide surface control Ru nanoparticle formation and catalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125722.	2.3	9
3	Utilizing Stimuli Responsive Linkages to Engineer and Enhance Polymer Nanoparticle-Based Drug Delivery Platforms. ACS Applied Bio Materials, 2021, 4, 4720-4736.	2.3	25
4	Magnetic Nanoparticle-Containing Supports as Carriers of Immobilized Enzymes: Key Factors Influencing the Biocatalyst Performance. Nanomaterials, 2021, 11, 2257.	1.9	18
5	Chitosan as capping agent in a robust one-pot procedure for a magnetic catalyst synthesis. Carbohydrate Polymers, 2021, 269, 118267.	5.1	3
6	Magnetically Recoverable Nanoparticulate Catalysts for Cross-Coupling Reactions: The Dendritic Support Influences the Catalytic Performance. Nanomaterials, 2021, 11, 3345.	1.9	3
7	Role of Polymer Structures in Catalysis by Transition Metal and Metal Oxide Nanoparticle Composites. Chemical Reviews, 2020, 120, 1350-1396.	23.0	155
8	Theranostics Based on Magnetic Nanoparticles and Polymers: Intelligent Design for Efficient Diagnostics and Therapy. Frontiers in Chemistry, 2020, 8, 561.	1.8	31
9	Glucose Oxidase Immobilized on Magnetic Zirconia: Controlling Catalytic Performance and Stability. ACS Omega, 2020, 5, 12329-12338.	1.6	10
10	Selective Hydrogenation of Biomassâ€Derived Furfural: Enhanced Catalytic Performance of Pdâ^'Cu Alloy Nanoparticles in Porous Polymer. ChemPlusChem, 2020, 85, 1697-1703.	1.3	13
11	Pd Catalyst Based on Hyperbranched Polypyridylphenylene Formed In Situ on Magnetic Silica Allows for Excellent Performance in Suzuki–Miyaura Reaction. ACS Applied Materials & Interfaces, 2020, 12, 22170-22178.	4.0	17
12	Dendritic effect for immobilized pyridylphenylene dendrons in hosting catalytic Pd species: Positive or negative?. Reactive and Functional Polymers, 2020, 151, 104582.	2.0	5
13	Elastomer based nanocomposites with reduced graphene oxide nanofillers allow for enhanced tensile and electrical properties. Journal of Polymer Research, 2020, 27, 1.	1.2	8
14	Design of biocatalysts for efficient catalytic processes. Current Opinion in Chemical Engineering, 2019, 26, 1-8.	3.8	24
15	The structure, optical absorption and luminescence properties of the Zn1-xThxSe quantum dots prepared via mercaptoethanol assisted colloidal approach. Optik, 2019, 193, 162984.	1.4	0
16	Pyridylphenylene dendrons immobilized on the surface of chemically modified magnetic silica as efficient stabilizing molecules of Pd species. Applied Surface Science, 2019, 488, 865-873.	3.1	17
17	Clustering of Iron Oxide Nanoparticles with Amphiphilic Invertible Polymer Enhances Uptake and Release of Drugs and MRI Properties. Particle and Particle Systems Characterization, 2019, 36, 1900112.	1.2	3
18	Synthesis and characterization of p-type transparent conducting Ni1-xRuxO (0â€â‰ x â€â‰ x €0.1) films prepar pulsed laser deposition. Ceramics International, 2019, 45, 7984-7994.	red by	58

#	Article	lF	CITATIONS
19	Magnetic Drug Delivery: Where the Field Is Going. Frontiers in Chemistry, 2018, 6, 619.	1.8	219
20	Zn ²⁺ Ion Surface Enrichment in Doped Iron Oxide Nanoparticles Leads to Charge Carrier Density Enhancement. ACS Omega, 2018, 3, 16328-16337.	1.6	13
21	Facile Synthesis of Magnetically Recoverable Pd and Ru Catalysts for 4-Nitrophenol Reduction: Identifying Key Factors. ACS Omega, 2018, 3, 14717-14725.	1.6	20
22	Magnetically Recoverable Catalysts: Beyond Magnetic Separation. Frontiers in Chemistry, 2018, 6, 298.	1.8	37
23	Immobilized glucose oxidase on magnetic silica and alumina: Beyond magnetic separation. International Journal of Biological Macromolecules, 2018, 120, 896-905.	3.6	27
24	Insights into Sustainable Glucose Oxidation Using Magnetically Recoverable Biocatalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 9845-9853.	3.2	8
25	Graphene Derivative in Magnetically Recoverable Catalyst Determines Catalytic Properties in Transfer Hydrogenation of Nitroarenes to Anilines with 2-Propanol. ACS Applied Materials & Samp; Interfaces, 2018, 10, 21356-21364.	4.0	25
26	Hybrid composite polymer electrolytes: ionic liquids as a magic bullet for the poly(ethylene) Tj ETQq0 0 0 rgBT /	Overlock 1	0 Тƒ 50 462 Т
27	Enhancing the Catalytic Activity of Zn-Containing Magnetic Oxides in a Methanol Synthesis: Identifying the Key Factors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2285-2294.	4.0	17
28	Hydrogenation of bio-oil into higher alcohols over Ru/Fe3O4-SiO2 catalysts. Fuel Processing Technology, 2017, 167, 738-746.	3.7	14
29	Metal-Ion Distribution and Oxygen Vacancies That Determine the Activity of Magnetically Recoverable Catalysts in Methanol Synthesis. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34005-34014.	4.0	16
30	Efficient Furfuryl Alcohol Synthesis from Furfural over Magnetically Recoverable Catalysts: Does the Catalyst Stabilizing Medium Matter?. ChemistrySelect, 2017, 2, 5485-5491.	0.7	16
31	Cr–Containing Magnetic Oxides in a Methanol Synthesis: Does Cr Ion Distribution Matter?. ChemistrySelect, 2017, 2, 6269-6276.	0.7	4
32	Graphene and graphene-like materials in biomass conversion: paving the way to the future. Journal of Materials Chemistry A, 2017, 5, 25131-25143.	5.2	71
33	Oriented Attachment Is a Major Control Mechanism To Form Nail-like Mn-Doped ZnO Nanocrystals. Langmuir, 2017, 33, 14709-14717.	1.6	11
34	Ru-Containing Magnetically Recoverable Catalysts: A Sustainable Pathway from Cellulose to Ethylene and Propylene Glycols. ACS Applied Materials & Eamp; Interfaces, 2016, 8, 21285-21293.	4.0	51
35	Metal oxide–zeolite composites in transformation of methanol to hydrocarbons: do iron oxide and nickel oxide matter?. RSC Advances, 2016, 6, 75166-75177.	1.7	14
36	Induced Microphase Separation in Hybrid Composite Polymer Electrolytes Based on Poly(acrylonitrileâ€∢i>ràâ€butadienes) and Ionic Liquids. Macromolecular Chemistry and Physics, 2016, 217, 794-803.	1.1	56

#	Article	IF	CITATIONS
37	Zinc-Containing Magnetic Oxides Stabilized by a Polymer: One Phase or Two?. ACS Applied Materials & Eamp; Interfaces, 2016, 8, 891-899.	4.0	22
38	Coat Protein-Dependent Behavior of Poly(ethylene glycol) Tails in Iron Oxide Core Virus-like Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2015, 7, 12089-12098.	4.0	17
39	Design of ruthenium/iron oxide nanoparticle mixtures for hydrogenation of nitrobenzene. Catalysis Science and Technology, 2015, 5, 1902-1910.	2.1	104
40	Magnetically Recoverable Catalysts with Dendritic Ligands for Enhanced Catalysis and Easy Separation. ChemCatChem, 2015, 7, 1058-1060.	1.8	13
41	Proof of Concept: Magnetic Fixation of Dendron-Functionalized Iron Oxide Nanoparticles Containing Palladium Nanoparticles for Continuous-Flow Suzuki Coupling Reactions. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27254-27261.	4.0	32
42	Viruslike Nanoparticles with Maghemite Cores Allow for Enhanced MRI Contrast Agents. Chemistry of Materials, 2015, 27, 327-335.	3.2	32
43	Fabrication of Magnetically Recoverable Catalysts Based on Mixtures of Pd and Iron Oxide Nanoparticles for Hydrogenation of Alkyne Alcohols. ACS Applied Materials & Samp; Interfaces, 2014, 6, 21652-21660.	4.0	85
44	Structural Study of Pt–Fe Nanoparticles: New Insights into Pt Bimetallic Nanoparticle Formation with Oxidized Fe Species. Journal of Physical Chemistry C, 2014, 118, 24769-24775.	1.5	10
45	Multicore Iron Oxide Mesocrystals Stabilized by a Poly(phenylenepyridyl) Dendron and Dendrimer: Role of the Dendron/Dendrimer Self-Assembly. Langmuir, 2014, 30, 8543-8550.	1.6	12
46	Hydrophobic Periphery Tails of Polyphenylenepyridyl Dendrons Control Nanoparticle Formation and Catalytic Properties. Chemistry of Materials, 2014, 26, 5654-5663.	3.2	20
47	Polyphenylenepyridyl Dendrons with Functional Periphery and Focal Points: Syntheses and Applications. Macromolecules, 2013, 46, 5890-5898.	2.2	80
48	D-glucose catalytic oxidation over palladium nanoparticles introduced in the hypercrosslinked polystyrene matrix. Green Processing and Synthesis, 2013, 2, .	1.3	1
49	Kinetics of Lactose Hydrogenation over Ruthenium Nanoparticles in Hypercrosslinked Polystyrene. Industrial & Engineering Chemistry Research, 2013, 52, 14066-14080.	1.8	22
50	Solid polymer electrolytes which contain tricoordinate boron for enhanced conductivity and transference numbers. Journal of Materials Chemistry A, 2013, 1, 1108-1116.	5.2	84
51	Synthesis and characterization of electropolymerized molecularly imprinted microporous polyaniline films for solar cell applications. Polymer Composites, 2013, 34, 299-304.	2.3	76
52	\hat{I}^3 -Fe2O3 nanoparticle surface controls PtFe nanoparticle growth and catalytic properties. Nanoscale, 2013, 5, 2921.	2.8	14
53	Multifunctional Nanohybrids by Self-Assembly of Monodisperse Iron Oxide Nanoparticles and Nanolamellar MoS ₂ Plates. Chemistry of Materials, 2013, 25, 2434-2440.	3.2	96
54	Unusual Structural Morphology of Dendrimer/CdS Nanocomposites Revealed by Synchrotron X-ray Scattering. Journal of Physical Chemistry C, 2012, 116, 8069-8078.	1.5	12

#	Article	IF	CITATIONS
55	Pd(ii) nanoparticles in porous polystyrene: factors influencing the nanoparticle size and catalytic properties. Journal of Materials Chemistry, 2012, 22, 6441.	6.7	24
56	Magnetic field-induced alignment of nanoparticles in electrospun microfibers. RSC Advances, 2012, 2, 4603.	1.7	15
57	Polyphenylenepyridyl dendrimers as stabilizing and controlling agents for CdS nanoparticle formation. Nanoscale, 2012, 4, 2378.	2.8	10
58	Palladium Containing Catalysts Based on Hypercrosslinked Polystyrene for Selective Hydrogenation of Acetylene Alcohols. Topics in Catalysis, 2012, 55, 492-497.	1.3	37
59	Magnetic Virus-like Nanoparticles in <i>N. benthamiana</i> Plants: A New Paradigm for Environmental and Agronomic Biotechnological Research. ACS Nano, 2011, 5, 4037-4045.	7.3	84
60	Nanoparticles by Decomposition of Long Chain Iron Carboxylates: From Spheres to Stars and Cubes. Langmuir, 2011, 27, 3044-3050.	1.6	72
61	Dendrimers as Encapsulating, Stabilizing, or Directing Agents for Inorganic Nanoparticles. Chemical Reviews, 2011, 111, 5301-5344.	23.0	265
62	Virusâ€Based Nanoparticles with Inorganic Cargo: What Does the Future Hold?. Small, 2011, 7, 1609-1618.	5.2	44
63	Hydrophilization of Magnetic Nanoparticles with Modified Alternating Copolymers. Part 1: The Influence of the Grafting. Journal of Physical Chemistry C, 2010, 114, 21900-21907.	1.5	38
64	Hydrophilization of Magnetic Nanoparticles with Modified Alternating Copolymers. Part 2: Behavior in Solution. Journal of Physical Chemistry C, 2010, 114, 21908-21913.	1.5	19
65	Influence of heterogenization on catalytic behavior of mono- and bimetallic nanoparticles formed in poly(styrene)-block-poly(4-vinylpyridine) micelles. Journal of Catalysis, 2009, 262, 150-158.	3.1	11
66	Bioinspired Gradient Materials via Blending of Polymer Electrolytes and Applying Electric Forces. Journal of Physical Chemistry B, 2009, 113 , $647-655$.	1.2	17
67	In situ Growth of Pd Nanoparticles in Crosslinked Polymer Matrices. Macromolecular Rapid Communications, 2008, 29, 1926-1931.	2.0	11
68	Hydrophilic Monodisperse Magnetic Nanoparticles Protected by an Amphiphilic Alternating Copolymer. Journal of Physical Chemistry C, 2008, 112, 16809-16817.	1.5	59
69	Mixed Co/Fe Oxide Nanoparticles in Block Copolymer Micelles. Langmuir, 2008, 24, 12618-12626.	1.6	17
70	Composite Solid Polymer Electrolytes Based on Pluronics: Does Ordering Matter?. Chemistry of Materials, 2007, 19, 6258-6265.	3.2	12
71	Structure and Properties of Iron Oxide Nanoparticles Encapsulated by Phospholipids with Poly(ethylene glycol) Tails. Journal of Physical Chemistry C, 2007, 111, 18078-18086.	1.5	70
72	Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation. Chemistry of Materials, 2007, 19, 3624-3632.	3.2	504

#	Article	IF	CITATIONS
73	Self-Assembled Virus-like Particles with Magnetic Cores. Nano Letters, 2007, 7, 2407-2416.	4.5	164
74	Structure and behavior of nanoparticulate catalysts based on ultrathin chitosan layers. Journal of Molecular Catalysis A, 2007, 276, 116-129.	4.8	10
75	Solid Polymer Single-Ion Conductors:Â Synthesis and Properties. Chemistry of Materials, 2006, 18, 708-715.	3.2	39
76	Hybrid Polymer Particles with a Protective Shell:Â Synthesis, Structure, and Templating. Chemistry of Materials, 2006, 18, 2418-2430.	3.2	14
77	Morphology of hybrid polystyrene-block-poly(ethylene oxide) micelles: Analytical ultracentrifugation and SANS studies. Journal of Colloid and Interface Science, 2006, 299, 944-952.	5.0	7
78	Quantum Dot Encapsulation in Viral Capsids. Nano Letters, 2006, 6, 1993-1999.	4.5	202
79	Metalated Diblock and Triblock Poly(ethylene oxide)-block-poly(4-vinylpyridine) Copolymers: Understanding of Micelle and Bulk Structure. Journal of Physical Chemistry B, 2005, 109, 18786-18798.	1.2	45
80	Coreâ^'Shell Nanostructures from Single Poly(N-vinylcaprolactam) Macromolecules:Â Stabilization and Visualization. Langmuir, 2005, 21, 2652-2655.	1.6	11
81	Transformations of Poly(methoxy hexa(ethylene glycol) methacrylate)-b-(2-(diethylamino)ethyl) Tj ETQq1 1 0.78	4314 rgBT	⁻ /Qverlock 10
82	Poly(Phenylene-pyridyl) Dendrimers:  Synthesis and Templating of Metal Nanoparticles. Macromolecules, 2005, 38, 9920-9932.	2.2	86
83	Nanostructured polymeric systems as nanoreactors for nanoparticle formation. Russian Chemical Reviews, 2004, 73, 501-515.	2.5	68
84	Selective dehydrolinalool hydrogenation with poly(ethylene oxide)-block-poly-2-vinylpyridine micelles filled with Pd nanoparticles. Journal of Molecular Catalysis A, 2004, 208, 273-284.	4.8	66
85	Design of organic–inorganic solid polymer electrolytes: synthesis, structure, and properties. Journal of Materials Chemistry, 2004, 14, 1812-1820.	6.7	51
86	Platinum Nanoparticles Generated in Functionality-Enhanced Reaction Media Based on Polyoctadecylsiloxane with Long-Chain Functional Modifiers. Journal of Physical Chemistry B, 2004, 108, 6175-6185.	1.2	15
87	Influence of Metalation on the Morphologies of Poly(ethylene oxide)-block-poly(4-vinylpyridine) Block Copolymer Micelles. Langmuir, 2004, 20, 3543-3550.	1.6	138
88	Dependence of Conductivity on the Interplay of Structure and Polymer Dynamics in a Composite Polymer Electrolyte. Journal of Physical Chemistry B, 2004, 108, 918-928.	1.2	12
89	Molybdenum Sulfide Nanoparticles in Block Copolymer Micelles:  Synthesis and Tribological Properties. Chemistry of Materials, 2004, 16, 2369-2378.	3.2	23
90	Structure and Catalytic Properties of Pt-Modified Hyper-Cross-Linked Polystyrene Exhibiting Hierarchical Porosity. Journal of Physical Chemistry B, 2004, 108, 18234-18242.	1.2	77

#	Article	lF	CITATIONS
91	Functional Polymer Colloids with Ordered Interior. Langmuir, 2004, 20, 1100-1110.	1.6	4
92	Controlled Synthesis of Novel Metalated Poly(aminohexyl)-(aminopropyl)silsesquioxane Colloids. Langmuir, 2003, 19, 7071-7083.	1.6	22
93	Mesoporous Alumina and Aluminosilica with Pd and Pt Nanoparticles:  Structure and Catalytic Properties. Chemistry of Materials, 2003, 15, 2623-2631.	3.2	55
94	Star-like Aromatic Conjugated Polymers and Dendrimers for OLEDs. Materials Research Society Symposia Proceedings, 2003, 785, 1061.	0.1	0
95	Synthesis of Metal-Loaded Poly(aminohexyl)(aminopropyl)silsesquioxane Colloids and Their Self-Organization into Dendrites. Nano Letters, 2002, 2, 873-876.	4.5	26
96	Comicellization of Polystyrene-block-Poly(ethylene oxide) with Cationic and Anionic Surfactants in Aqueous Solutions:  Indications and Limits. Journal of Physical Chemistry B, 2001, 105, 9077-9082.	1.2	40
97	The Hybrids of Polystyrene-block-Poly(ethylene Oxide) Micelles and Sodium Dodecyl Sulfate in Aqueous Solutions: Interaction with Rh Ions and Rh Nanoparticle Formation. Journal of Colloid and Interface Science, 2000, 230, 140-149.	5.0	55
98	Structure and Properties of Bimetallic Colloids Formed in Polystyrene-block-Poly-4-vinylpyridine Micelles: Catalytic Behavior in Selective Hydrogenation of Dehydrolinalool. Journal of Catalysis, 2000, 196, 302-314.	3.1	112
99	Formation of Metal Nanoparticles in Multilayered Poly(octadecylsiloxane) As Revealed by Anomalous Small-Angle X-ray Scattering. Chemistry of Materials, 2000, 12, 3552-3560.	3.2	29
100	Small-Angle X-ray Scattering Study of Platinum-Containing Hydrogel/Surfactant Complexes. Journal of Physical Chemistry B, 2000, 104, 5242-5250.	1.2	29
101	Synthesis and Induced Micellization of Pd-Containing Polystyrene-block-poly-m-vinyltriphenylphosphine Diblock Copolymers. Chemistry of Materials, 2000, 12, 114-121.	3.2	39
102	Metal Nanoparticles Grown in the Nanostructured Matrix of Poly(octadecylsiloxane). Langmuir, 2000, 16, 8221-8225.	1.6	31
103	Stabilization of Metal Nanoparticles in Aqueous Medium by Polyethyleneoxide–Polyethyleneimine Block Copolymers. Journal of Colloid and Interface Science, 1999, 212, 197-211.	5.0	128
104	Organized Functionalization of Mesoporous Silica Supports Using Prefabricated Metal-Polymer Modules. Advanced Materials, 1999, 11, 1014-1018.	11.1	56
105	Successive Use of Amphiphilic Block Copolymers as Nanoreactors and Templates:  Preparation of Porous Silica with Metal Nanoparticles. Chemistry of Materials, 1999, 11, 1402-1405.	3.2	117
106	Induced Micellization by Interaction of Poly(2-vinylpyridine)-block-poly(ethylene oxide) with Metal Compounds. Micelle Characteristics and Metal Nanoparticle Formation. Langmuir, 1999, 15, 6256-6262.	1.6	208
107	Preparation of Noble-Metal Colloids in Block Copolymer Micelles and Their Catalytic Properties in Hydrogenation. Chemistry of Materials, 1997, 9, 923-931.	3.2	182
108	Nonclassical Shapes of Noble-Metal Colloids by Synthesis in Microgel Nanoreactors. Angewandte Chemie International Edition in English, 1997, 36, 2080-2083.	4.4	151

#	Article	IF	CITATIONS
109	Synthesis and characterization of noble metal colloids in block copolymer micelles. Advanced Materials, 1995, 7, 1000-1005.	11.1	357