Sophie Valcke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2604384/publications.pdf

Version: 2024-02-01

279798 377865 3,970 34 23 34 citations h-index g-index papers 36 36 36 5441 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Benchmarking Regridding Libraries Used in Earth System Modelling. Mathematical and Computational Applications, 2022, 27, 31.	1.3	3
2	Tropical Cyclone Integrated Kinetic Energy in an Ensemble of HighResMIP Simulations. Geophysical Research Letters, 2021, 48, e2020GL090963.	4.0	13
3	A Schwarz iterative method to evaluate ocean–atmosphere coupling schemes: implementation and diagnostics in IPSL-CM6-SW-VLR. Geoscientific Model Development, 2021, 14, 2959-2975.	3.6	3
4	Tracking Changes in Climate Sensitivity in CNRM Climate Models. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002190.	3.8	7
5	An assessment of the Indian Ocean mean state and seasonal cycle in a suite of interannual CORE-II simulations. Ocean Modelling, 2020, 145, 101503.	2.4	20
6	Impact of Higher Spatial Atmospheric Resolution on Precipitation Extremes Over Land in Global Climate Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032184.	3.3	69
7	Projected Future Changes in Tropical Cyclones Using the CMIP6 HighResMIP Multimodel Ensemble. Geophysical Research Letters, 2020, 47, e2020GL088662.	4.0	119
8	Impact of Model Resolution on Tropical Cyclone Simulation Using the HighResMIP–PRIMAVERA Multimodel Ensemble. Journal of Climate, 2020, 33, 2557-2583.	3.2	141
9	Evaluation of CNRM Earth System Model, CNRMâ€ESM2â€1: Role of Earth System Processes in Presentâ€Day and Future Climate. Journal of Advances in Modeling Earth Systems, 2019, 11, 4182-4227.	3.8	309
10	Evaluation of CMIP6 DECK Experiments With CNRMâ€CM6â€1. Journal of Advances in Modeling Earth Systems, 2019, 11, 2177-2213.	3.8	494
11	Crossing the chasm: how to develop weather and climate models for next generation computers?. Geoscientific Model Development, 2018, 11, 1799-1821.	3.6	50
12	Decadal prediction skill using a high-resolution climate model. Climate Dynamics, 2017, 49, 3527-3550.	3.8	9
13	SURFEX v8.0 interface with OASIS3-MCT to couple atmosphere with hydrology, ocean, waves and sea-ice models, from coastal to global scales. Geoscientific Model Development, 2017, 10, 4207-4227.	3.6	50
14	Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0. Geoscientific Model Development, 2017, 10, 3297-3308.	3.6	183
15	Sharing Experiences and Outlook on Coupling Technologies for Earth System Models. Bulletin of the American Meteorological Society, 2016, 97, ES53-ES56.	3.3	6
16	North and equatorial Pacific Ocean circulation in the CORE-II hindcast simulations. Ocean Modelling, 2016, 104, 143-170.	2.4	32
17	An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes. Ocean Modelling, 2016, 100, 141-161.	2.4	81
18	An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part II: Liquid freshwater. Ocean Modelling, 2016, 99, 86-109.	2.4	58

#	Article	IF	CITATIONS
19	An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I: Sea ice and solid freshwater. Ocean Modelling, 2016, 99, 110-132.	2.4	64
20	North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modelling, 2016, 97, 65-90.	2.4	131
21	Second Workshop on Coupling Technologies for Earth System Models. Bulletin of the American Meteorological Society, 2014, 95, ES34-ES38.	3.3	4
22	High-Performance Computing for Climate Modeling. Bulletin of the American Meteorological Society, 2014, 95, ES97-ES100.	3.3	2
23	Development and exploitation of a controlled vocabulary in support of climate modelling. Geoscientific Model Development, 2014, 7, 479-493.	3.6	11
24	North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modelling, 2014, 73, 76-107.	2.4	320
25	An assessment of global and regional sea level for years 1993–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 2014, 78, 35-89.	2.4	106
26	The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dynamics, 2013, 40, 2091-2121.	3.8	1,008
27	The OASIS3 coupler: a European climate modelling community software. Geoscientific Model Development, 2013, 6, 373-388.	3.6	360
28	Describing Earth system simulations with the Metafor CIM. Geoscientific Model Development, 2012, 5, 1493-1500.	3.6	15
29	Coupling technologies for Earth System Modelling. Geoscientific Model Development, 2012, 5, 1589-1596.	3.6	62
30	Model of the Regional Coupled Earth system (MORCE): Application to process and climate studies in vulnerable regions. Environmental Modelling and Software, 2012, 35, 1-18.	4.5	57
31	OASIS4 – a coupling software for next generation earth system modelling. Geoscientific Model Development, 2010, 3, 87-104.	3.6	86
32	Simulation des changements climatiques au cours du XXIe siÃ"cle incluant l'ozone stratosphérique. Comptes Rendus - Geoscience, 2002, 334, 147-154.	1.2	40
33	Transient CO2Experiment using the ARPEGE/OPAICE non flux corrected coupled model. Geophysical Research Letters, 1998, 25, 2277-2280.	4.0	25
34	On the Variability of the Thermohaline Circulation in the GFDL Coupled Model. Journal of Climate, 1998, 11, 759-767.	3.2	29