List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2604228/publications.pdf Version: 2024-02-01

		17440	28297
127	11,650	63	105
papers	citations	h-index	g-index
100	100	100	10510
133	133	133	13513
all docs	docs citations	times ranked	citing authors

ΔΙΔΙΝ ΜΔΗΝΙΕΙ

#	Article	IF	CITATIONS
1	Large-scale pan-cancer analysis reveals broad prognostic association between TGF-β ligands, not Hedgehog, and GLI1/2 expression in tumors. Scientific Reports, 2020, 10, 14491.	3.3	10
2	GL1/GL12 functional interplay is required to control Hedgehog/GL1 targets gene expression. Biochemical Journal, 2020, 477, 3131-3145.	3.7	23
3	Transcriptional repression of the tyrosinase-related protein 2 gene by transforming growth factor-Î ² and the Kruppel-like transcription factor GLI2. Journal of Dermatological Science, 2019, 94, 321-329.	1.9	2
4	Molecular mechanisms underlying TGF-ß/Hippo signaling crosstalks – Role of baso-apical epithelial cell polarity. International Journal of Biochemistry and Cell Biology, 2018, 98, 75-81.	2.8	15
5	How Bad Is the Hedgehog? GLI-Dependent, Hedgehog-Independent Cancers on the Importance of Biomarkers for Proper Patients Selection. Journal of Investigative Dermatology Symposium Proceedings, 2018, 19, S87-S88.	0.8	2
6	Halofuginone inhibits TGF-β/BMP signaling and in combination with zoledronic acid enhances inhibition of breast cancer bone metastasis. Oncotarget, 2017, 8, 86447-86462.	1.8	35
7	Cell Density Sensing Alters TGF-β Signaling in a Cell-Type-Specific Manner, Independent from Hippo Pathway Activation. Developmental Cell, 2015, 32, 640-651.	7.0	59
8	Analysis of gene expression dynamics revealed delayed and abnormal epidermal repair process in aged compared to young skin. Archives of Dermatological Research, 2015, 307, 351-364.	1.9	11
9	Pro-Invasive Activity of the Hippo Pathway Effectors YAP and TAZ in Cutaneous Melanoma. Journal of Investigative Dermatology, 2014, 134, 123-132.	0.7	122
10	<scp>GLI</scp> 2 cooperates with <scp>ZEB</scp> 1 for transcriptional repression of <scp><i>CDH1</i></scp> expression in human melanoma cells. Pigment Cell and Melanoma Research, 2013, 26, 861-873.	3.3	30
11	Overlapping activities of TGF-β and Hedgehog signaling in cancer: Therapeutic targets for cancer treatment. , 2013, 137, 183-199.		51
12	Insights into the Transforming Growth Factor-Î ² Signaling Pathway in Cutaneous Melanoma. Annals of Dermatology, 2013, 25, 135.	0.9	72
13	The Role of TGF-β in Cutaneous Melanoma Biology. , 2013, , 235-254.		0
14	Expression of Microphthalmia-associated Transcription Factor (MITF), Which Is Critical for Melanoma Progression, Is Inhibited by Both Transcription Factor GLI2 and Transforming Growth Factor-β. Journal of Biological Chemistry, 2012, 287, 17996-18004.	3.4	84
15	Halofuginone Inhibits the Establishment and Progression of Melanoma Bone Metastases. Cancer Research, 2012, 72, 6247-6256.	0.9	66
16	Systematic classification of melanoma cells by phenotypeâ€specific gene expression mapping. Pigment Cell and Melanoma Research, 2012, 25, 343-353.	3.3	155
17	Integrating developmental signals: a Hippo in the (path)way. Oncogene, 2012, 31, 1743-1756.	5.9	107
18	Crosstalk between TGFâ€Î² and hedgehog signaling in cancer. FEBS Letters, 2012, 586, 2016-2025.	2.8	135

#	Article	IF	CITATIONS
19	GLI2 and Mâ€MITF transcription factors control exclusive gene expression programs and inversely regulate invasion in human melanoma cells. Pigment Cell and Melanoma Research, 2011, 24, 932-943.	3.3	71
20	Efficient TGF-β/SMAD signaling in human melanoma cells associated with high c-SKI/SnoN expression. Molecular Cancer, 2011, 10, 2.	19.2	46
21	Correction: TGF-β-RI Kinase Inhibitor SD-208 Reduces the Development and Progression of Melanoma Bone Metastases. Cancer Research, 2011, 71, 2023-2023.	0.9	0
22	TGF-β/SMAD/GLI2 Signaling Axis in Cancer Progression and Metastasis. Cancer Research, 2011, 71, 5606-5610.	0.9	182
23	TGF-Î ² -RI Kinase Inhibitor SD-208 Reduces the Development and Progression of Melanoma Bone Metastases. Cancer Research, 2011, 71, 175-184.	0.9	203
24	Large scale study of epidermal recovery after stratum corneum removal: dynamics of genomic response. Experimental Dermatology, 2010, 19, 259-268.	2.9	17
25	GLI2-Mediated Melanoma Invasion and Metastasis. Journal of the National Cancer Institute, 2010, 102, 1148-1159.	6.3	149
26	Increased cAMP Levels Modulate Transforming Growth Factor-β/Smad-induced Expression of Extracellular Matrix Components and Other Key Fibroblast Effector Functions. Journal of Biological Chemistry, 2010, 285, 409-421.	3.4	73
27	Smad7 restricts melanoma invasion by restoring Nâ€cadherin expression and establishing heterotypic cell–cell interactions in vivo. Pigment Cell and Melanoma Research, 2010, 23, 795-808.	3.3	24
28	Cloning of the Human GLI2 Promoter. Journal of Biological Chemistry, 2009, 284, 31523-31531.	3.4	151
29	câ€Fos accelerates hepatocyte conversion to a fibroblastoid phenotype through ERKâ€mediated upregulation of paxillinâ€6erine178 phosphorylation. Molecular Carcinogenesis, 2009, 48, 532-544.	2.7	5
30	Transforming Growth Factor-Î ² Signaling in Skin: Stromal to Epithelial Cross-Talk. Journal of Investigative Dermatology, 2009, 129, 7-9.	0.7	29
31	Dendritic cells in the skin – potential use for melanoma treatment. Pigment Cell and Melanoma Research, 2009, 22, 30-41.	3.3	14
32	Advanced glycation end products regulate extracellular matrix protein and protease expression by human glomerular mesangial cells. International Journal of Molecular Medicine, 2009, 23, 513-20.	4.0	34
33	Desferrioxamineâ€driven upregulation of angiogenic factor expression by human bone marrow stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 272-278.	2.7	34
34	TNFâ€Î± represses connexin43 expression in hacat keratinocytes via activation of JNK signaling. Journal of Cellular Physiology, 2008, 216, 438-444.	4.1	23
35	TGFâ€Î² induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways. Journal of Cellular Physiology, 2008, 217, 759-768.	4.1	44
36	Transforming growth factorâ€Î² in cutaneous melanoma. Pigment Cell and Melanoma Research, 2008, 21, 123-132.	3.3	125

#	Article	IF	CITATIONS
37	JNK supports survival in melanoma cells by controlling cell cycle arrest and apoptosis. Pigment Cell and Melanoma Research, 2008, 21, 429-438.	3.3	51
38	Response to the letter by Reed etÂal Pigment Cell and Melanoma Research, 2008, 21, 496-497.	3.3	2
39	Transforming Growth Factor-β Suppresses the Ability of Ski to Inhibit Tumor Metastasis by Inducing Its Degradation. Cancer Research, 2008, 68, 3277-3285.	0.9	94
40	c-Fos overexpression increases the proliferation of human hepatocytes by stabilizing nuclear Cyclin D1. World Journal of Gastroenterology, 2008, 14, 6339.	3.3	34
41	TGF- \hat{I}^2 and Stromal Influences Over Local Tumor Invasion. , 2008, , 537-551.		0
42	Jun D cooperates with p65 to activate the proximal ÂB site of the cyclin D1 promoter: role of PI3K/PDK-1. Carcinogenesis, 2007, 29, 536-543.	2.8	27
43	Induction of Sonic Hedgehog Mediators by Transforming Growth Factor-β: Smad3-Dependent Activation of <i>Gli2</i> and <i>Gli1</i> Expression <i>In vitro</i> and <i>In vivo</i> . Cancer Research, 2007, 67, 6981-6986.	0.9	359
44	Stable Overexpression of Smad7 in Human Melanoma Cells Impairs Bone Metastasis. Cancer Research, 2007, 67, 2317-2324.	0.9	187
45	In Vitro Evidence for a Direct Antifibrotic Role of the Immunosuppressive Drug Mycophenolate Mofetil. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 583-589.	2.5	108
46	Transforming growth factor- \hat{l}^2 and fibrosis. World Journal of Gastroenterology, 2007, 13, 3056.	3.3	438
47	Physical and functional cooperation between AP-1 and β-catenin for the regulation of TCF-dependent genes. Oncogene, 2007, 26, 3492-3502.	5.9	76
48	Positive regulation of apoptosis by HCA66, a new Apaf-1 interacting protein, and its putative role in the physiopathology of NF1 microdeletion syndrome patients. Cell Death and Differentiation, 2007, 14, 1222-1233.	11.2	31
49	Involvement of ERK signaling in halofuginone-driven inhibition of fibroblast ability to contract collagen lattices. European Journal of Pharmacology, 2007, 573, 65-69.	3.5	13
50	Mitogen- and stress-activated protein kinase 1 is critical for interleukin-1-induced, CREB-mediated, c-fos gene expression in keratinocytes. Oncogene, 2006, 25, 4449-4457.	5.9	49
51	Transforming growth factor-β signaling through the Smad proteins: Role in systemic sclerosis. Autoimmunity Reviews, 2006, 5, 563-569.	5.8	117
52	Modulation of Collagen and MMP-1 Gene Expression in Fibroblasts by the Immunosuppressive Drug Rapamycin. Journal of Biological Chemistry, 2006, 281, 33045-33052.	3.4	67
53	Interplays Between The Smad and Map Kinase Signaling Pathways. , 2006, , 317-334.		2
54	Fibronectin is distinctly downregulated in murine mammary adenocarcinoma cells with high metastatic potential. Oncology Reports, 2006, 16, 1403-10.	2.6	14

#	Article	IF	CITATIONS
55	The steroid receptor co-activator-1 (SRC-1) potentiates TGF-β/Smad signaling: role of p300/CBP. Oncogene, 2005, 24, 1936-1945.	5.9	22
56	Stable overexpression of Smad7 in human melanoma cells inhibits their tumorigenicity in vitro and in vivo. Oncogene, 2005, 24, 7624-7629.	5.9	100
57	Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-β: implications for carcinogenesis. Oncogene, 2005, 24, 5742-5750.	5.9	373
58	Cytoplasmic SnoN in normal tissues and nonmalignant cells antagonizes TGF-β signaling by sequestration of the Smad proteins. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12437-12442.	7.1	74
59	Transforming Growth Factor-β. , 2005, 117, 69-80.		132
60	EMMPRIN/CD147, an MMP modulator in cancer, development and tissue repair. Biochimie, 2005, 87, 361-368.	2.6	255
61	Differential Expression of Extracellular Matrix Metalloproteinase Inducer (CD147) in Normal and Ulcerated Corneas. American Journal of Pathology, 2005, 166, 209-219.	3.8	115
62	Ultraviolet Irradiation Represses PATCHED Gene Transcription in Human Epidermal Keratinocytes through an Activator Protein-1-Dependent Process. Cancer Research, 2004, 64, 2699-2704.	0.9	22
63	Amelioration of Radiation-induced Fibrosis. Journal of Biological Chemistry, 2004, 279, 15167-15176.	3.4	187
64	TGF-β and TNF-α: antagonistic cytokines controlling type I collagen gene expression. Cellular Signalling, 2004, 16, 873-880.	3.6	164
65	Mammalian transforming growth factor-βs: Smad signaling and physio-pathological roles. International Journal of Biochemistry and Cell Biology, 2004, 36, 1161-1165.	2.8	153
66	TGF-β-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. Journal of Dermatological Science, 2004, 35, 83-92.	1.9	392
67	Modulation of Gene Expression Induced in Human Epidermis by Environmental Stress In Vivo. Journal of Investigative Dermatology, 2003, 121, 1447-1458.	0.7	90
68	Cyclic adenosine 3′,5′-monophosphate-elevating agents inhibit transforming growth factor-β-induced SMAD3/4-dependent transcription via a protein kinase A-dependent mechanism. Oncogene, 2003, 22, 8881-8890.	5.9	70
69	Retinoic acid receptors interfere with the TGF-β/Smad signaling pathway in a ligand-specific manner. Oncogene, 2003, 22, 8212-8220.	5.9	75
70	Late corneal perforation after photorefractive keratectomy associated with topical diclofenac. Ophthalmology, 2003, 110, 1626-1631.	5.2	55
71	Disruption of Basal JNK Activity Differentially Affects Key Fibroblast Functions Important for Wound Healing. Journal of Biological Chemistry, 2003, 278, 24624-24628.	3.4	103
72	Y-box-binding Protein YB-1 Mediates Transcriptional Repression of Human α2(I) Collagen Gene Expression by Interferon-γ. Journal of Biological Chemistry, 2003, 278, 5156-5162.	3.4	72

#	Article	IF	CITATIONS
73	A Central Role for the JNK Pathway in Mediating the Antagonistic Activity of Pro-inflammatory Cytokines against Transforming Growth Factor-I ² -driven SMAD3/4-specific Gene Expression. Journal of Biological Chemistry, 2003, 278, 1585-1593.	3.4	84
74	5-Fluorouracil Blocks Transforming Growth Factor-β–Induced α2Type I Collagen Gene (COL1A2) Expression in Human Fibroblasts via c-Jun NH2-Terminal Kinase/Activator Protein-1 Activation. Molecular Pharmacology, 2003, 64, 707-713.	2.3	99
75	Y-box-binding protein YB-1 mediates transcriptional repression of human α2(I) collagen gene expression by interferon-Î ³ Journal of Biological Chemistry, 2003, 278, 12598.	3.4	1
76	c-Jun Associates with the Oncoprotein Ski and Suppresses Smad2 Transcriptional Activity. Journal of Biological Chemistry, 2002, 277, 29094-29100.	3.4	45
77	Human T-cell lymphotropic virus oncoprotein Tax represses TGF-β1 signaling in human T cells via c-Jun activation: a potential mechanism of HTLV-I leukemogenesis. Blood, 2002, 100, 4129-4138.	1.4	91
78	Control of connective tissue gene expression by TGFβ: Role of smad proteins in fibrosis. Current Rheumatology Reports, 2002, 4, 143-149.	4.7	81
79	Transforming Growth Factor-β Signaling Through the Smad Pathway: Role in Extracellular Matrix Gene Expression and Regulation. Journal of Investigative Dermatology, 2002, 118, 211-215.	0.7	550
80	Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-β/Smad signaling. Oncogene, 2002, 21, 4879-4884.	5.9	199
81	Distinct involvement of the Junâ€Nâ€ŧerminal kinase and NFâ€î®B pathways in the repression of the human <i>COL1A2</i> gene by TNFâ€î±. EMBO Reports, 2002, 3, 1069-1074.	4.5	63
82	Blocking Sp1 Transcription Factor Broadly Inhibits Extracellular Matrix Gene Expression In Vitro and In Vivo: Implications for the Treatment of Tissue Fibrosis. Journal of Investigative Dermatology, 2001, 116, 755-763.	0.7	119
83	Downregulation of human type VII collagen (COL7A1) promoter activity by dexamethasone. Experimental Dermatology, 2001, 10, 28-34.	2.9	23
84	Induction of the AP-1 members c-Jun and JunB by TGF-β/Smad suppresses early Smad-driven gene activation. Oncogene, 2001, 20, 2205-2211.	5.9	94
85	Smad3/AP-1 interactions control transcriptional responses to TGF-β in a promoter-specific manner. Oncogene, 2001, 20, 3332-3340.	5.9	175
86	Tumor Necrosis Factor-α Induces Distinctive NF-κB Signaling within Human Dermal Fibroblasts. Journal of Biological Chemistry, 2001, 276, 6214-6224.	3.4	25
87	Identification of Novel TCF-β/Smad Gene Targets in Dermal Fibroblasts using a Combined cDNA Microarray/Promoter Transactivation Approach. Journal of Biological Chemistry, 2001, 276, 17058-17062.	3.4	575
88	Tumor Necrosis Factor-α Inhibits Transforming Growth Factor-β /Smad Signaling in Human Dermal Fibroblasts via AP-1 Activation. Journal of Biological Chemistry, 2000, 275, 30226-30231.	3.4	155
89	Cytokine modulation of type XV collagen gene expression in human dermal fibroblast cultures. Experimental Dermatology, 1999, 8, 407-412.	2.9	12
90	Cooperation between SMAD and NF-κB in growth factor regulated type VII collagen gene expression. Oncogene, 1999, 18, 1837-1844.	5.9	63

#	Article	IF	CITATIONS
91	POMC and Fibroblast Biology. Annals of the New York Academy of Sciences, 1999, 885, 262-267.	3.8	8
92	The Role of Proopiomelanocortinâ€Derived Peptides in Skin Fibroblast and Mast Cell Functions. Annals of the New York Academy of Sciences, 1999, 885, 268-276.	3.8	32
93	Récentes avancées dans la compréhension de la voie de signalisation du TGF-β par les Smad Medecine/Sciences, 1999, 15, 535.	0.2	1
94	A proximal element within the human α2(I) collagen (COL1A2) promoter, distinct from the tumor necrosis factor-α response element, mediates transcriptional repression by interferon-γ. Matrix Biology, 1998, 16, 447-456.	3.6	40
95	Smad-dependent Transcriptional Activation of Human Type VII Collagen Gene (COL7A1) Promoter by Transforming Growth Factor-β. Journal of Biological Chemistry, 1998, 273, 13053-13057.	3.4	104
96	SMAD3/4-dependent transcriptional activation of the human type VII collagen gene (COL7A1) promoter by transforming growth factor Â. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14769-14774.	7.1	166
97	Structural and Functional Characterization of the Human Perlecan Gene Promoter. Journal of Biological Chemistry, 1997, 272, 5219-5228.	3.4	105
98	A GT-rich Sequence Binding the Transcription Factor Sp1 Is Crucial for High Expression of the Human Type VII Collagen Gene (COL7A1) in Fibroblasts and Keratinocytes. Journal of Biological Chemistry, 1997, 272, 10196-10204.	3.4	38
99	Three Novel Homozygous Point Mutations and a New Polymorphism in the COL17A1 Gene: Relation to Biological and Clinical Phenotypes of Junctional Epidermolysis Bullosa. American Journal of Human Genetics, 1997, 60, 1344-1353.	6.2	77
100	Propiomelanocortin (POMC) gene expression by normal skin and keloid fibroblasts in culture: modulation by cytokines. Experimental Dermatology, 1997, 6, 111-115.	2.9	38
101	Involvement of the AP-1 site within the 5â€2-flanking region of the stromelysin-1 gene in induction of the gene expression by UVA irradiation. Archives of Dermatological Research, 1996, 288, 628-632.	1.9	9
102	Cell-specific Induction of Distinct Oncogenes of the Jun Family Is Responsible for Differential Regulation of Collagenase Gene Expression by Transforming Growth Factor-β in Fibroblasts and Keratinocytes. Journal of Biological Chemistry, 1996, 271, 10917-10923.	3.4	141
103	Identification of a Bimodal Regulatory Element Encompassing a Canonical AP-1 Binding Site in the Proximal Promoter Region of the Human Decorin Gene. Journal of Biological Chemistry, 1996, 271, 24824-24829.	3.4	41
104	An AP-1 Binding Sequence Is Essential for Regulation of the Human α2(I) Collagen (COL1A2) Promoter Activity by Transforming Growth Factor-β. Journal of Biological Chemistry, 1996, 271, 3272-3278.	3.4	301
105	Involvement of the AP-1 site within the 5â€2-flanking region of the stromelysin-1 gene in induction of the gene expression by UVA irradiation. Archives of Dermatological Research, 1996, 288, 628-632.	1.9	Ο
106	Interferon-Î ³ Coordinately Upregulates Matrix Metalloprotease (MMP)-1 and MMP-3, But Not Tissue Inhibitor of Metalloproteases (TIMP), Expression in Cultured Keratinocytes. Journal of Investigative Dermatology, 1995, 104, 384-390.	0.7	63
107	Transcriptional Regulation of Decorin Gene Expression. Journal of Biological Chemistry, 1995, 270, 11692-11700.	3.4	127
108	Differential cytokine modulation of the genes LAMA3, LAMB3, and LAMC2, encoding the constitutive	2.8	57

¹⁰⁸ polypeptides, $\hat{l}\pm 3$, $\hat{l}^2 3$, and $\hat{l}^3 2$, of human laminin 5 in epidermal keratinocytes. FEBS Letters, 1995, 368, 556-558. ^{2.8} ⁵⁷

#	Article	IF	CITATIONS
109	Uncoordinate regulation of collagenase, stromelysin, and tissue inhibitor of metalloproteinases genes by prostaglandin E2: Selective enhancement of collagenase gene expression in human dermal fibroblasts in culture. Journal of Cellular Biochemistry, 1994, 54, 465-472.	2.6	52
110	Type VII Collagen Gene Expression by Human Skin Fibroblasts and Keratinocytes in Culture: Influence of Donor Age and Cytokine Responses. Journal of Investigative Dermatology, 1994, 102, 205-209.	0.7	53
111	Enhanced Elastin and Fibrillin Gene Expression in Chronically Photodamaged Skin. Journal of Investigative Dermatology, 1994, 103, 182-186.	0.7	201
112	Transforming growth factor β exerts opposite effects from interleukin-1β on cultured rabbit articular chondrocytes through reduction of interleukin-1 receptor expression. Arthritis and Rheumatism, 1993, 36, 44-50.	6.7	110
113	Cytokine regulation of metalloproteinase gene expression. Journal of Cellular Biochemistry, 1993, 53, 288-295.	2.6	405
114	Transcriptional interactions of transforming growth-factor-Î ² with pro-inflammatory cytokines. Current Biology, 1993, 3, 822-831.	3.9	51
115	Leukoregulin, A T-cell derived cytokine, upregulates stromelysin-1 gene expression in human dermal fibroblasts: Evidence for the role of AP-1 in transcriptional activiation. Journal of Cellular Biochemistry, 1992, 50, 53-61.	2.6	16
116	Characterization of proteoglycans synthesized by rabbit articular chondrocytes in response to transforming growth factor-1² (TGF-1²). Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1093, 196-206.	4.1	64
117	Tumor Necrosis Factor Alpha Inhibits Wound Healing in the Rat. European Surgical Research, 1991, 23, 261-268.	1.3	69
118	Comparative Effects of Interleukin-1 and Tumor Necrosis Factor-Î \pm on Collagen Production and Corresponding Procollagen mRNA Levels in Human Dermal Fibroblasts. Journal of Investigative Dermatology, 1991, 96, 243-249.	0.7	104
119	Induction of interleukin-1β production in human dermal fibroblasts by interleukin-1α and tumor necrosis factor-α. Involvement of protein kinase-dependent and adenylate cyclase-dependent regulatory pathways. Journal of Cellular Biochemistry, 1991, 47, 174-183.	2.6	26
120	Modulation of human dermal fibroblast extracellular matrix metabolism by the lymphokine leukoregulin Journal of Cell Biology, 1991, 113, 1455-1462.	5.2	10
121	Modulation of extracellular matrix metabolism in rabbit articular chondrocytes and human rheumatoid synovial cells by the non-steroidal anti-inflammatory drug etodolac. I: Collagen synthesis. Agents and Actions, 1990, 31, 345-352.	0.7	5
122	Modulation of extracellular matrix metabolism in rabbit articular chondrocytes and human rheumatoid synovial cells by the non-steroidal anti-inflammatory drug etodolac. II: Glycosaminoglycan synthesis. Agents and Actions, 1990, 31, 358-367.	0.7	14
123	Tumor necrosis factor inhibits collagen and fibronectin synthesis in human dermal fibroblasts. FEBS Letters, 1988, 236, 47-52.	2.8	84
124	Gene expression of fibroblast matrix proteins is altered by indomethacin. FEBS Letters, 1988, 231, 125-129.	2.8	17
125	Transforming growth factor \hat{l}^2 stimulates collagen and glycosaminoglycan biosynthesis in cultured rabbit articular chondrocytes. FEBS Letters, 1988, 234, 172-175.	2.8	176
126	Interleukin-1 α and β induce interleukin-1 β gene expression in human dermal fibroblasts. Biochemical and Biophysical Research Communications, 1988, 156, 1209-1214.	2.1	26

#	Article	IF	CITATIONS
127	The Dermal-Epidermal Basement Membrane Zone in Cutaneous Wound Healing. , 1988, , 513-560.		2