Ahmad M Alqudah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2603618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic Insight Into the Insect Resistance in Bread Wheat Exploiting the Untapped Natural Diversity. Frontiers in Genetics, 2022, 13, 828905.	1.1	16
2	Genetic analysis toward more nutritious barley grains for a food secure world. , 2022, 63, 6.		9
3	Exploring genetic variation among Jordanian Solanum lycopersicon L. landraces and their performance under salt stress using SSR markers. Journal of Genetic Engineering and Biotechnology, 2022, 20, 45.	1.5	6
4	Effect of hydrogel on corn growth, water use efficiency, and soil properties in a semi-arid region. Journal of the Saudi Society of Agricultural Sciences, 2022, 21, 518-524.	1.0	7
5	Combined GWAS and QTL mapping revealed candidate genes and SNP network controlling recovery and tolerance traits associated with drought tolerance in seedling winter wheat. Genomics, 2022, 114, 110358.	1.3	20
6	Molecular Characterization of Tomato (Solanum lycopersicum L.) Accessions under Drought Stress. Horticulturae, 2022, 8, 600.	1.2	3
7	Phytohormones and Transcriptome Analyses Revealed the Dynamics Involved in Spikelet Abortion and Inflorescence Development in Rice. International Journal of Molecular Sciences, 2022, 23, 7887.	1.8	5
8	Advances in Genomics-Based Breeding of Barley: Molecular Tools and Genomic Databases. Agronomy, 2021, 11, 894.	1.3	23
9	Genetic Diversity, Linkage Disequilibrium and Population Structure of Bulgarian Bread Wheat Assessed by Genome-Wide Distributed SNP Markers: From Old Germplasm to Semi-Dwarf Cultivars. Plants, 2021, 10, 1116.	1.6	15
10	Toward identification of a putative candidate gene for nutrient mineral accumulation in wheat grains for human nutrition purposes. Journal of Experimental Botany, 2021, 72, 6305-6318.	2.4	12
11	Insight into the genetic contribution of maximum yield potential, spikelet development and abortion in barley. Plants People Planet, 2021, 3, 721-736.	1.6	4
12	Genetic associations uncover candidate SNP markers and genes associated with salt tolerance during seedling developmental phase in barley. Environmental and Experimental Botany, 2021, 188, 104499.	2.0	28
13	Exploring natural diversity reveals alleles to enhance antioxidant system in barley under salt stress. Plant Physiology and Biochemistry, 2021, 166, 789-798.	2.8	15
14	Genetic dissection of grain architecture-related traits in a winter wheat population. BMC Plant Biology, 2021, 21, 417.	1.6	16
15	GWAS revealed effect of genotype × environment interactions for grain yield of Nebraska winter wheat. BMC Genomics, 2021, 22, 2.	1.2	49
16	Genetic factors controlling nTiO2 nanoparticles stress tolerance in barley (Hordeum vulgare) during seed germination and seedling development. Functional Plant Biology, 2021, 48, 1288.	1.1	7
17	GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley – A review. Journal of Advanced Research, 2020, 22, 119-135.	4.4	227
18	Genome-wide association mapping reveals putative candidate genes for drought tolerance in barley. Environmental and Experimental Botany, 2020, 180, 104237.	2.0	14

Ahmad M Alqudah

#	Article	IF	CITATIONS
19	DEFECTIVE ENDOSPERM-D1 (Dee-D1) is crucial for endosperm development in hexaploid wheat. Communications Biology, 2020, 3, 791.	2.0	3
20	Genetic structure and diversity of upland rice germplasm using diversity array technology (DArT)-based single nucleotide polymorphism (SNP) markers. Plant Genetic Resources: Characterisation and Utilisation, 2020, 18, 343-350.	0.4	5
21	Natural Variation Uncovers Candidate Genes for Barley Spikelet Number and Grain Yield under Drought Stress. Genes, 2020, 11, 533.	1.0	29
22	Genome-wide and SNP network analyses reveal genetic control of spikelet sterility and yield-related traits in wheat. Scientific Reports, 2020, 10, 2098.	1.6	26
23	Drought Stress Tolerance in Wheat and Barley: Advances in Physiology, Breeding and Genetics Research. International Journal of Molecular Sciences, 2019, 20, 3137.	1.8	353
24	Uncovering the Genetic Architecture of Fruiting Efficiency in Bread Wheat: A Viable Alternative to Increase Yield Potential. Crop Science, 2019, 59, 1853-1869.	0.8	11
25	Genetic analysis of drought response of wheat following either chemical desiccation or the use of a rain-out shelter. Journal of Applied Genetics, 2019, 60, 137-146.	1.0	11
26	Novel loci and a role for nitric oxide for seed dormancy and preharvest sprouting in barley. Plant, Cell and Environment, 2019, 42, 1318-1327.	2.8	32
27	Recent Advances in Wheat (Triticum spp.) Breeding. , 2019, , 559-593.		27
28	Natural variation and genetic make-up of leaf blade area in spring barley. Theoretical and Applied Genetics, 2018, 131, 873-886.	1.8	39
29	Genetic basis of drought tolerance during seed germination in barley. PLoS ONE, 2018, 13, e0206682.	1.1	69
30	Identifying Candidate Genes for Enhancing Grain Zn Concentration in Wheat. Frontiers in Plant Science, 2018, 9, 1313.	1.7	56
31	Key Hormonal Components Regulate Agronomically Important Traits in Barley. International Journal of Molecular Sciences, 2018, 19, 795.	1.8	21
32	Leaf primordium size specifies leaf width and vein number among rowâ€ŧype classes in barley. Plant Journal, 2017, 91, 601-612.	2.8	25
33	Genomeâ€wide association analyses of 54 traits identified multiple loci for the determination of floret fertility in wheat. New Phytologist, 2017, 214, 257-270.	3.5	114
34	VRS2 regulates hormone-mediated inflorescence patterning in barley. Nature Genetics, 2017, 49, 157-161.	9.4	127
35	Heading Date Is Not Flowering Time in Spring Barley. Frontiers in Plant Science, 2017, 8, 896.	1.7	46
36	The Genetic Architecture of Barley Plant Stature. Frontiers in Genetics, 2016, 7, 117.	1.1	86

3

Ahmad M Alqudah

#	Article	IF	CITATIONS
37	Barley Leaf Area and Leaf Growth Rates Are Maximized during the Pre-Anthesis Phase. Agronomy, 2015, 5, 107-129.	1.3	22
38	Awn primordium to tipping is the most decisive developmental phase for spikelet survival in barley. Functional Plant Biology, 2014, 41, 424.	1.1	54
39	Genetic Dissection of Photoperiod Response Based on GWAS of Pre-Anthesis Phase Duration in Spring Barley. PLoS ONE, 2014, 9, e113120.	1.1	105
40	Drought Stress Effect on Crop Pollination, Seed Set, Yield and Quality. , 2011, , 193-213.		57
41	Effect of different pre-sowing seed treatments on the germination of Leucaena leucocephala (Lam.) and Acacia farnesiana (L.). New Forests, 2011, 42, 397-407.	0.7	28

Effects of late-terminal drought stress on seed germination and vigor of barley ($\langle i \rangle$ Hordeum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 542

43	The influence of drying methods on the acquisition of seed desiccation tolerance and the maintenance of vigour in wheat (Triticum durum). Seed Science and Technology, 2010, 38, 193-208.	0.6	2
44	ENHANCING SEED GERMINATION OF FOUR CROP SPECIES USING AN ULTRASONIC TECHNIQUE. Experimental Agriculture, 2010, 46, 231-242.	0.4	64
45	Yield Potential Evaluation in Chickpea Genotypes under Late Terminal Drought in Relation to the Length of Reproductive Stage. Italian Journal of Agronomy, 2009, 4, 111.	0.4	29
46	Impacts of drought on pollination of <i>Trigonella moabitica</i> (Fabaceae) via bee visitations. Archives of Agronomy and Soil Science, 2009, 55, 683-692.	1.3	26
47	Effect of pollination on seed set of <i>Origanum syriacum</i> under semiarid Mediterranean conditions. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2009, 59, 273-278.	0.3	1
48	The Effect of Lateâ€ŧerminal Drought Stress on Yield Components of Four Barley Cultivars. Journal of Agronomy and Crop Science, 2009, 195, 427-441.	1.7	154
49	Impact of bee pollinators on seed set and yield of Vicia villosa spp. <i>dasycarpa</i> (<i>Leguminosae</i>) grown under semiarid conditions. Italian Journal of Animal Science, 2009, 8, 65-74.	0.8	7
50	An index to quantify seed moisture loss rate in relationship with seed desiccation tolerance in common vetch. Seed Science and Technology, 2009, 37, .	0.6	1
51	Fruit set and quality of loquats (Eriobotrya japonica) as effected by pollinations under sub-humid Mediterranean. Scientia Horticulturae, 2008, 117, 58-62.	1.7	27
52	Comparative Study in Seed Yield and Flowers Attractivity to Bee Visitors Between Nigella Sativa L. and Nigella Damascena L. (Ranunculaceae) Grown Under Semiarid Conditions. Italian Journal of Agronomy, 2008, 3, 125.	0.4	5