

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2603461/publications.pdf Version: 2024-02-01

KALLI

#	Article	IF	CITATIONS
1	<i>GmGSTU</i> 13 Is Related to the Development of Mosaic Symptoms in Soybean Plants Infected with Soybean Mosaic Virus. Phytopathology, 2022, 112, 452-459.	2.2	3
2	Biological Control of <i>Fusarium oxysporum</i> f. sp. <i>cubense</i> Tropical Race 4 in Banana Plantlets Using Newly Isolated <i>Streptomyces</i> sp. WHL7 from Marine Soft Coral. Plant Disease, 2022, 106, 254-259.	1.4	13
3	Biocontrol potential and antifungal mechanism of a novel Streptomyces sichuanensis against Fusarium oxysporum f. sp. cubense tropical race 4 in vitro and in vivo. Applied Microbiology and Biotechnology, 2022, 106, 1633-1649.	3.6	11
4	Discovery and characterization of differentially expressed soybean miRNAs and their targets during soybean mosaic virus infection unveils novel insight into Soybean-SMV interaction. BMC Genomics, 2022, 23, 171.	2.8	1
5	Fine mapping of the <i>R</i> _{<i>SC9</i>} gene and preliminary functional analysis of candidate resistance genes in soybean (<scp><i>Glycine max</i></scp>). Plant Breeding, 2022, 141, 49-62.	1.9	6
6	Mapping Locus R and predicting candidate gene resistant to Soybean mosaic virus strain SC11 through linkage analysis combined with genome resequencing of the parents in soybean. Genomics, 2022, , 110387.	2.9	2
7	The E3 Ligase GmPUB21 Negatively Regulates Drought and Salinity Stress Response in Soybean. International Journal of Molecular Sciences, 2022, 23, 6893.	4.1	8
8	Highly Efficient Leaf Base Protoplast Isolation and Transient Expression Systems for Orchids and Other Important Monocot Crops. Frontiers in Plant Science, 2021, 12, 626015.	3.6	34
9	A cell wall-localized NLR confers resistance to Soybean mosaic virus by recognizing viral-encoded cylindrical inclusion protein. Molecular Plant, 2021, 14, 1881-1900.	8.3	33
10	Optimizing RNAi-Target by Nicotiana benthamiana-Soybean Mosaic Virus System Drives Broad Resistance to Soybean Mosaic Virus in Soybean. Frontiers in Plant Science, 2021, 12, 739971.	3.6	1
11	A Newly Isolated Streptomyces sp. YYS-7 With a Broad-Spectrum Antifungal Activity Improves the Banana Plant Resistance to Fusarium oxysporum f. sp. cubense Tropical Race 4. Frontiers in Microbiology, 2020, 11, 1712.	3.5	45
12	A DnaJ protein that interacts with soybean mosaic virus coat protein serves as a key susceptibility factor for viral infection. Virus Research, 2020, 281, 197870.	2.2	17
13	Anti-Foc RT4 Activity of a Newly Isolated Streptomyces sp. 5–10 From a Medicinal Plant (Curculigo) Tj ETQq1	1 0,78431 3.5	4 rgBT /Over
14	Comparison of Transcriptome Differences in Soybean Response to Soybean Mosaic Virus under Normal Light and in the Shade. Viruses, 2019, 11, 793.	3.3	22
15	Involvement of abscisic acid-responsive element-binding factors in cassava (Manihot esculenta) dehydration stress response. Scientific Reports, 2019, 9, 12661.	3.3	21
16	Agrobacterium rhizogenes-induced soybean hairy roots versus Soybean mosaic virus (ARISHR-SMV) is an efficient pathosystem for studying soybean–virus interactions. Plant Methods, 2019, 15, 56.	4.3	7
17	Genetic evolutionary analysis of soybean mosaic virus populations from three geographic locations in China based on the P1 and CP genes. Archives of Virology, 2019, 164, 1037-1048.	2.1	8
18	Spatio-temporal characterisation of changes in the resistance of widely grown soybean cultivars to Soybean mosaic virus across a century of breeding in China. Crop and Pasture Science, 2018, 69, 395.	1.5	6

Kai Li

#	Article	IF	CITATIONS
19	Characterization of broadâ€spectrum resistance to Soybean mosaic virus in soybean [<i>Glycine max</i> (L) Merr.] cultivar †RNâ€9'. Plant Breeding, 2018, 137, 605-613.	1.9	4
20	Fine-mapping and identifying candidate genes conferring resistance to Soybean mosaic virus strain SC20 in soybean. Theoretical and Applied Genetics, 2018, 131, 461-476.	3.6	36
21	Inheritance, fine-mapping, and candidate gene analyses of resistance to soybean mosaic virus strain SC5 in soybean. Molecular Genetics and Genomics, 2017, 292, 811-822.	2.1	35
22	Fine-mapping and identification of a novel locus Rsc15 underlying soybean resistance to Soybean mosaic virus. Theoretical and Applied Genetics, 2017, 130, 2395-2410.	3.6	34
23	Fine mapping of the <i>R</i> _{<i>SC8</i>} locus and expression analysis of candidate <scp>SMV</scp> resistance genes in soybean. Plant Breeding, 2016, 135, 701-706.	1.9	18
24	Genetic analysis and identification of two soybean mosaic virus resistance genes in soybean [<i>Glycine max</i> (L.) Merr]. Plant Breeding, 2015, 134, 684-695.	1.9	28
25	Characterization of Soybean mosaic virus resistance derived from inverted repeat-SMV-HC-Pro genes in multiple soybean cultivars. Theoretical and Applied Genetics, 2015, 128, 1489-1505.	3.6	43
26	Genetic Diversity of Chinese Soybean mosaic virus Strains and Their Relationships with Other Plant Potyviruses Based on P3 Gene Sequences. Journal of Integrative Agriculture, 2014, 13, 2184-2195.	3.5	3
27	Differential necrotic lesion formation in soybean cultivars in response to soybean mosaic virus. European Journal of Plant Pathology, 2014, 139, 525-534.	1.7	7
28	Identification and differential expression of two isogenes encoding 1-deoxy-d-xylulose 5-phosphate reductoisomerase in Glycine max. Plant Biotechnology Reports, 2012, 6, 363-371.	1.5	7
29	Inheritance and Gene Mapping of Resistance to Soybean Mosaic Virus Strain SC14 in Soybean. Journal of Integrative Plant Biology, 2006, 48, 1466-1472.	8.5	29