George Tsilomelekis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2603098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in integrated process analytical techniques, modeling, and control strategies to enable continuous biomanufacturing of monoclonal antibodies. Journal of Chemical Technology and Biotechnology, 2022, 97, 2317-2335.	1.6	25
2	FTIR studies on plasticization of silicate glass with ionic liquids (conversion to silicate polymers). Journal of Non-Crystalline Solids, 2021, 561, 120757.	1.5	8
3	Polyethylene Hydrogenolysis at Mild Conditions over Ruthenium on Tungstated Zirconia. Jacs Au, 2021, 1, 1422-1434.	3.6	95
4	CO ₂ -assisted ethane oxidative dehydrogenation over MoO _{<i>x</i>} catalysts supported on reducible CeO ₂ –TiO ₂ . Catalysis Science and Technology, 2021, 11, 5791-5801.	2.1	11
5	Permeation dynamics of dimethyl methylphosphonate through polyelectrolyte composite membranes by in-situ Raman spectroscopy. Journal of Membrane Science, 2020, 595, 117462.	4.1	7
6	Accessible and Interactive Learning of Spectroscopic Parameterization through Computer-Aided Training. Journal of Chemical Education, 2020, 97, 4527-4532.	1.1	8
7	Characterization of Sulfated SnO2-ZrO2 Catalysts and Their Catalytic Performance on the Tert-Butylation of Phenol. Catalysts, 2020, 10, 726.	1.6	11
8	Catalytic performance and stability of Fe-doped CeO ₂ in propane oxidative dehydrogenation using carbon dioxide as an oxidant. Catalysis Science and Technology, 2020, 10, 4362-4372.	2.1	35
9	Toward the coupling of microbial biosynthesis and catalysis for the production of alkylated phenolic compounds. AICHE Journal, 2020, 66, e16547.	1.8	0
10	Adsorptive Desulfurization of 4,6-Dimethyldibenzothiophene on Bimetallic Mesoporous Y Zeolites: Effects of Cu and Ce Composition and Configuration. Industrial & Engineering Chemistry Research, 2019, 58, 18301-18312.	1.8	22
11	Colloidal plasmonic nanostar antennas with wide range resonance tunability. Nanoscale, 2019, 11, 18662-18671.	2.8	31
12	Effect of metal chlorides on glucose mutarotation and possible implications on humin formation. Reaction Chemistry and Engineering, 2019, 4, 273-277.	1.9	15
13	Molten Salt Hydrates in the Synthesis of TiO ₂ Flakes. ACS Omega, 2019, 4, 21302-21310.	1.6	4
14	Changes in Polymorph Composition in P25-TiO ₂ during Pretreatment Analyzed by Differential Diffuse Reflectance Spectral Analysis. Journal of Physical Chemistry C, 2018, 122, 5093-5104.	1.5	31
15	Removal of benzothiophene and dibenzothiophene from hydrocarbon fuels using CuCe mesoporous Y zeolites in the presence of aromatics. Applied Catalysis B: Environmental, 2018, 234, 130-142.	10.8	64
16	Structural analysis of humins formed in the BrÃ̧nsted acid catalyzed dehydration of fructose. Green Chemistry, 2018, 20, 997-1006.	4.6	123
17	Molten and glassy tellurium(IV) oxosulfato complexes in the TeO 2 –K 2 S 2 O 7 system studied by Raman spectroscopy: Stoichiometry, vibrational properties and molecular structure. Vibrational Spectroscopy, 2018, 97, 85-90.	1.2	2
18	Molecular structure and reactivity of titania-supported transition metal oxide catalysts synthesized by equilibrium deposition filtration for the oxidative dehydrogenation of ethane. Comptes Rendus Chimie, 2016, 19, 1226-1236.	0.2	5

#	Article	IF	CITATIONS
19	Molybdena deposited on titania by equilibrium deposition filtration: structural evolution of oxo–molybdenum(<scp>vi</scp>) sites with temperature. Physical Chemistry Chemical Physics, 2016, 18, 23980-23989.	1.3	17
20	Molecular structure, morphology and growth mechanisms and rates of 5-hydroxymethyl furfural (HMF) derived humins. Green Chemistry, 2016, 18, 1983-1993.	4.6	276
21	Mechanism of BrÃ,nsted Acid atalyzed Glucose Dehydration. ChemSusChem, 2015, 8, 1334-1341.	3.6	135
22	Cellulose Hydrolysis in Acidified LiBr Molten Salt Hydrate Media. Industrial & Engineering Chemistry Research, 2015, 54, 5226-5236.	1.8	63
23	Mechanism of BrÃ,nsted Acid-Catalyzed Glucose Dehydration. ChemSusChem, 2015, 8, 1291-1291.	3.6	3
24	Solvent-Induced Frequency Shifts of 5-Hydroxymethylfurfural Deduced via Infrared Spectroscopy and <i>ab Initio</i> Calculations. Journal of Physical Chemistry A, 2014, 118, 12149-12160.	1.1	9
25	Origin of 5â€Hydroxymethylfurfural Stability in Water/Dimethyl Sulfoxide Mixtures. ChemSusChem, 2014, 7, 117-126.	3.6	150
26	Temperature-Dependent Evolution of the Molecular Configuration of Oxo-Tungsten(VI) Species Deposited on the Surface of Titania. Journal of Physical Chemistry C, 2014, 118, 11319-11332.	1.5	18
27	On the configuration, molecular structure and vibrational properties of MoOx sites on alumina, zirconia, titania and silica. Catalysis Science and Technology, 2013, 3, 1869.	2.1	59
28	Molybdenum(VI) Oxosulfato Complexes in MoO3–K2S2O7–K2SO4 Molten Mixtures: Stoichiometry, Vibrational Properties, and Molecular Structures. Journal of Physical Chemistry A, 2012, 116, 8861-8872.	1.1	14
29	An operando Raman study of molecular structure and reactivity of molybdenum(vi) oxide supported on anatase for the oxidative dehydrogenation of ethane. Physical Chemistry Chemical Physics, 2012, 14, 2216-2228.	1.3	32
30	In Situ Raman and FTIR Spectroscopy of Molybdenum(VI) Oxide Supported on Titania Combined with ¹⁸ 0/ ¹⁶ 0 Exchange: Molecular Structure, Vibrational Properties, and Vibrational Isotope Effects. Journal of Physical Chemistry C, 2011, 115, 2146-2154.	1.5	42
31	Structural and vibrational properties of molybdena catalysts supported on alumina and zirconia studied by in situ Raman and FTIR spectroscopies combined with 180/160 isotopic substitution. Catalysis Today, 2010, 158, 146-155.	2.2	18
32	Temperature – dependent evolution of molecular configurations of oxomolybdenum species on MoO3/TiO2 catalysts monitored by in situ Raman spectroscopy. Studies in Surface Science and Catalysis, 2010, 175, 613-616.	1.5	6
33	Support effects on structure and activity of molybdenum oxide catalysts for the oxidative dehydrogenation of ethane. Catalysis Today, 2007, 127, 139-147.	2.2	65
34	Vanadia-based SCR catalysts supported on tungstated and sulfated zirconia: Influence of doping with potassium. Journal of Catalysis, 2007, 251, 459-473.	3.1	91