Zhengdong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2602746/publications.pdf

Version: 2024-02-01

101543 123424 4,179 111 36 61 citations g-index h-index papers 112 112 112 3807 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dodecylamine coordinated tri-arm CdS nanorod wrapped in intermittent ZnS shell for greatly improved photocatalytic H2 evolution. Chemical Engineering Journal, 2022, 429, 132382.	12.7	94
2	Polyvinylpyrrolidone regulated synthesis of mesoporous titanium niobium oxide as high-performance anode for lithium-ion batteries. Journal of Colloid and Interface Science, 2022, 608, 1782-1791.	9.4	12
3	Advances in Studies of Boron Nitride Nanosheets and Nanocomposites for Thermal Transport and Related Applications. ChemPhysChem, 2022, 23, .	2.1	12
4	Temperature Monitoring for 500 kV Oil-Filled Submarine Cable Based on BOTDA Distributed Optical Fiber Sensing Technology: Method and Application. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	4.7	7
5	2D Young's Modulus of Black Phosphorene with Different Layers. Journal of Physical Chemistry C, 2022, 126, 1094-1098.	3.1	3
6	The Investigation of the Effect of Filler Sizes in 3D-BN Skeletons on Thermal Conductivity of Epoxy-Based Composites. Nanomaterials, 2022, 12, 446.	4.1	64
7	Theoretical Investigation of the Oxygen Interaction on Co-doped YFeO3-δas a Novel Cathode for Solid Oxide Fuel Cells. Electrocatalysis, 2022, 13, 165-174.	3.0	O
8	Fast Identification of the Crystallographic Orientation of Violet Phosphorus Nanoflakes with Preferred Inâ€Plane Cleavage Edge Orientation. Advanced Functional Materials, 2022, 32, .	14.9	24
9	Charge-induced proton penetration across two-dimensional clay materials. Nanoscale, 2022, 14, 6518-6525.	5.6	3
10	Nanostructure and Advanced Energy Storage: Elaborate Material Designs Lead to High-Rate Pseudocapacitive lon Storage. ACS Nano, 2022, 16, 5131-5152.	14.6	73
11	On the Origins of Stereo- and Regio-Selectivities in the Formation of Fullerene–Fluorene Dyads. Journal of Organic Chemistry, 2022, 87, 4702-4711.	3.2	2
12	Core-shell Ag@C spheres derived from Ag-MOFs with tunable ligand exchanging phase inversion for electromagnetic wave absorption. Journal of Colloid and Interface Science, 2022, 620, 263-272.	9.4	70
13	Hollow TiNb ₂ O ₇ Nanospheres with a Carbon Coating as High-Efficiency Anode Materials for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 61-70.	6.7	28
14	Influence of imidazole derivatives on the dielectric and energy storage performance of epoxy. High Voltage, 2022, 7, 782-791.	4.7	7
15	Assessing (Mo _{2/3} Sc _{1/3}) ₂ C and (Mo _{2/3} Sc _{1/3}) ₂ CT ₂ (T = â^O, â^OH, and â^F) i-MXenes as High-Performance Electrode Materials for Lithium and Non-Lithium Ion Batteries. Journal of Physical Chemistry C. 2022, 126, 10273-10286.	3.1	5
16	Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices from the perspective of target applications. Frontiers of Chemical Science and Engineering, 2021, 15, 18-34.	4.4	25
17	Cu (II) decorated thiol-functionalized MOF as an efficient transfer medium of charge carriers promoting photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 404, 126533.	12.7	80
18	Thio linkage between CdS quantum dots and UiO-66-type MOFs as an effective transfer bridge of charge carriers boosting visible-light-driven photocatalytic hydrogen production. Journal of Colloid and Interface Science, 2021, 581, 1-10.	9.4	73

#	Article	IF	CITATIONS
19	Supercritical fluid processing of boron nitride nanosheets for polymeric nanocomposites of superior thermal transport properties. Journal of Supercritical Fluids, 2021, 167, 105035.	3.2	6
20	Au nanodots@thiol-UiO66@ZnIn2S4 nanosheets with significantly enhanced visible-light photocatalytic H2 evolution: The effect of different Au positions on the transfer of electron-hole pairs. Applied Catalysis B: Environmental, 2021, 282, 119550.	20.2	170
21	Silicon-integrated lead-free BaTiO ₃ -based film capacitors with excellent energy storage performance and highly stable irradiation resistance. Journal of Materials Chemistry A, 2021, 9, 14818-14826.	10.3	7
22	Ascorbic acid functionalized CdS–ZnO core–shell nanorods with hydrogen spillover for greatly enhanced photocatalytic H ₂ evolution and outstanding photostability. Journal of Materials Chemistry A, 2021, 9, 9735-9744.	10.3	77
23	Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets. Scientific Reports, 2021, 11, 2495.	3.3	97
24	Photoelectron Emission Yield of Au Film: Theoretical Calculation and Measurement. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-9.	4.7	1
25	Robust hollow TiO ₂ spheres for lithium/sodium ion batteries with excellent cycling stability and rate capability. Inorganic Chemistry Frontiers, 2021, 8, 5024-5033.	6.0	24
26	FeVO ₄ -supported Mn–Ce oxides for the low-temperature selective catalytic reduction of NO _{<i>x</i>} by NH ₃ . Catalysis Science and Technology, 2021, 11, 6770-6781.	4.1	16
27	Numerical Modeling, Electrical Characteristics Analysis and Experimental Validation of Severe Inter-Turn Short Circuit Fault Conditions on Stator Winding in DFIG of Wind Turbines. IEEE Access, 2021, 9, 13149-13158.	4.2	14
28	Mechanically enhanced healable and recyclable silicone with dynamic hindered urea bond for flexible electronics. Journal of Materials Chemistry C, 2021, 9, 8579-8588.	5.5	19
29	Unraveling the Hydroxide Ion Transportation Mechanism along the Surface of Two-Dimensional Layered Double Hydroxide Nanosheets. Journal of Physical Chemistry C, 2021, 125, 1240-1248.	3.1	10
30	A Review of High Density Solid Hydrogen Storage Materials by Pyrolysis for Promising Mobile Applications. Industrial & Engineering Chemistry Research, 2021, 60, 2737-2771.	3.7	52
31	Phonon Properties of Bulk Violet Phosphorus Single Crystals: Temperature and Pressure Evolution. ACS Applied Electronic Materials, 2021, 3, 1043-1049.	4.3	41
32	A synergistic interplay between dopant ALD cycles and film thickness on the improvement of the ferroelectricity of uncapped Al:HfO ₂ nanofilms. Nanotechnology, 2021, 32, 215708.	2.6	11
33	Influence of Residual Solvent on the Dielectric Performances of Polymer Dielectrics., 2021,,.		1
34	Research Progress of All Organic Polymer Dielectrics for Energy Storage from the Classification of Organic Structures. Macromolecular Chemistry and Physics, 2021, 222, 2100049.	2.2	26
35	Simultaneously Enhanced Thermal Conductivity and Dielectric Breakdown Strength in Sandwich AlN/Epoxy Composites. Nanomaterials, 2021, 11, 1898.	4.1	52
36	Preparation and Characterization of Narrow Size Distribution PMSQ Microspheres for High-Frequency Electronic Packaging. Materials, 2021, 14, 4233.	2.9	4

#	Article	IF	Citations
37	How Can the η1-Type Fullerene-Metal Bond Survive? A Systematic Survey of Reactions between Mono-EMFs and (M′Ln)2 Dimers. Inorganic Chemistry, 2021, 60, 11287-11296.	4.0	О
38	Inâ€doped LiCa _{2.98} MgV ₃ O ₁₂ rareâ€earthâ€free phosphor with a high photoluminescence quantum yield of 67.4%. Journal of the American Ceramic Society, 2021, 104, 5837-5847.	3.8	3
39	The desirable dielectric properties and high thermal conductivity of epoxy composites with the cobweb-structured SiCnw–SiO2–NH2 hybrids. Journal of Materials Science: Materials in Electronics, 2021, 32, 20973-20984.	2.2	27
40	Hydrogen spillover effect induced by ascorbic acid in CdS/NiO core-shell p-n heterojunction for significantly enhanced photocatalytic H2 evolution. Journal of Colloid and Interface Science, 2021, 596, 215-224.	9.4	65
41	Unveiling the Working Mechanism of g-C ₃ N ₄ as a Protection Layer for Lithium- and Sodium-Metal Anode. ACS Applied Materials & Interfaces, 2021, 13, 46821-46829.	8.0	11
42	Cross structured two-dimensional violet phosphorene with extremely high deformation resistance. Journal of Materials Chemistry A, 2021, 9, 13855-13860.	10.3	31
43	Measurement of Radiation-induced Conductivity of Polyimide under Steady-state X-ray Irradiation. , 2021, , .		2
44	Measurement of True Secondary Electron Emission Yields of Kapton., 2021,,.		1
45	Violet phosphorus quantum dots. Journal of Materials Chemistry A, 2021, 10, 245-250.	10.3	27
46	Porous N-doped carbon nanoflakes supported hybridized SnO2/Co3O4 nanocomposites as high-performance anode for lithium-ion batteries. Journal of Colloid and Interface Science, 2020, 560, 546-554.	9.4	33
47	Structure and Properties of Violet Phosphorus and Its Phosphorene Exfoliation. Angewandte Chemie - International Edition, 2020, 59, 1074-1080.	13.8	139
48	Anomalous proton conduction behavior across a nanoporous two-dimensional conjugated aromatic polymer membrane. Physical Chemistry Chemical Physics, 2020, 22, 2978-2985.	2.8	6
49	Asymmetric alicyclic amine-polyether amine molecular chain structure for improved energy storage density of high-temperature crosslinked polymer capacitor. Chemical Engineering Journal, 2020, 387, 123662.	12.7	96
50	Flower-like Mn/Co Glycerolate-Derived α-MnS/Co ₉ S ₈ /Carbon Heterostructures for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10215-10223.	5.1	22
51	Bare Mo-Based Ordered Double-Transition Metal MXenes as High-Performance Anode Materials for Aluminum-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 25769-25774.	3.1	23
52	Micro/nanostructured TiNb ₂ O ₇ -related electrode materials for high-performance electrochemical energy storage: recent advances and future prospects. Journal of Materials Chemistry A, 2020, 8, 18425-18463.	10.3	59
53	Epoxy/PVDF/Epoxy Composite Film with Concurrent Enhancement in Energy Density and Charge-discharge Efficiency. , 2020, , .		3
54	Enhanced energy density with high efficiency in epoxy-based capacitor films with steering TiO2 nanowires. , 2020, , .		0

#	Article	IF	Citations
55	NIR-plasmon-enhanced Systems for Energy Conversion and Environmental Remediation. Chemical Research in Chinese Universities, 2020, 36, 1000-1005.	2.6	4
56	Preparation of Few‣ayer Porous Graphene by a Soft Mechanical Method with a Short Rolling Transfer Process. ChemPlusChem, 2020, 85, 2482-2486.	2.8	1
57	Cu-ln2S3 nanorod induced the growth of Cu&In co-doped multi-arm CdS hetero-phase junction to promote photocatalytic H2 evolution. Chemical Engineering Journal, 2020, 399, 125785.	12.7	50
58	Synergizing Phase and Cavity in CoMoO <i>_x</i> >S <i>_y</i> Yolk–Shell Anodes to Coâ€Enhance Capacity and Rate Capability in Sodium Storage. Small, 2020, 16, e2002487.	10.0	27
59	Unraveling the Water-Mediated Proton Conduction Mechanism along the Surface of Graphene Oxide. Chemistry of Materials, 2020, 32, 6062-6069.	6.7	32
60	CdS/ZnS/ZnO ternary heterostructure nanofibers fabricated by electrospinning for excellent photocatalytic hydrogen evolution without co-catalyst. Chinese Journal of Catalysis, 2020, 41, 1421-1429.	14.0	44
61	Work function and band alignment of few-layer violet phosphorene. Journal of Materials Chemistry A, 2020, 8, 8586-8592.	10.3	43
62	Dispersion of high-quality boron nitride nanosheets in polyethylene for nanocomposites of superior thermal transport properties. Nanoscale Advances, 2020, 2, 2507-2513.	4.6	24
63	One-step synthesis of CdS/CdSe/CuS hollow nanospheres in aqueous solution for enhanced photocatalytic hydrogen evolution. Sustainable Energy and Fuels, 2020, 4, 3467-3476.	4.9	16
64	An ultrathin Al ₂ O ₃ bridging layer between CdS and ZnO boosts photocatalytic hydrogen production. Journal of Materials Chemistry A, 2020, 8, 11031-11042.	10.3	49
65	The 500kV Oil-filled Submarine Cable Temperature Monitoring System Based on BOTDA Distributed Optical Fiber Sensing Technology. , 2020, , .		8
66	Stator Inter-turns Short Circuit Fault Detection in DFIG Using Empirical Mode Decomposition Method on Leakage Flux., 2020,,.		4
67	Development of a Measurement System for the Secondary Electron Emission Yield Spectrum of Space Materials. , 2020, , .		0
68	Development of Photoelectron Emission Yield Measurement System for Metal Materials. , 2020, , .		2
69	Scalable production of few layered graphene by soft ball-microsphere rolling transfer. Carbon, 2019, 154, 402-409.	10.3	11
70	Energy-band-controlled ZnxCd1â^'xIn2S4 solid solution coupled with g-C3N4 nanosheets as 2D/2D heterostructure toward efficient photocatalytic H2 evolution. Chemical Engineering Journal, 2019, 378, 122192.	12.7	97
71	Ether-Group-Mediated Aqueous Proton Selective Transfer across Graphene-Embedded 18-Crown-6 Ether Pores. Journal of Physical Chemistry C, 2019, 123, 27429-27435.	3.1	12
72	Observing large ferroelectric polarization in top-electrode-free Al:HfO2 thin films with Al-rich strip structures. Applied Physics Letters, 2019, 115 , .	3.3	10

#	Article	IF	Citations
73	The structure and electronic properties of crimson phosphorus. Applied Physics Letters, 2019, 115, .	3.3	17
74	Metalâ€Organic Framework Derived Ge/TiO ₂ @C Nanotablets as Highâ€Performance Anode for Lithiumâ€ion Batteries. ChemistrySelect, 2019, 4, 10576-10580.	1.5	14
75	Hollow Carbon Nanoballs Coupled with Ultrafine TiO ₂ Nanoparticles as Efficient Sulfur Hosts for Lithium–Sulfur Batteries. Industrial & Engineering Chemistry Research, 2019, 58, 18197-18204.	3.7	13
76	Superior Thermoelectric Performance of Ordered Double Transition Metal MXenes: $Cr < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > TiC < sub > 2 < / sub > 2 < / sub > TiC < sub > 2 < / sub $	4.6	49
77	Boron Nitride Nanosheets from Different Preparations and Correlations with Their Material Properties. Industrial & Engineering Chemistry Research, 2019, 58, 18644-18653.	3.7	25
78	Chemisorption of NO ₂ to MoS ₂ Nanostructures and its Effects for MoS ₂ Sensors. ChemNanoMat, 2019, 5, 1123-1130.	2.8	41
79	Embedding CoMoO4 nanoparticles into porous electrospun carbon nanofibers towards superior lithium storage performance. Journal of Colloid and Interface Science, 2019, 553, 320-327.	9.4	32
80	One-step vulcanization of Cd(OH)Cl nanorods to synthesize CdS/ZnS/PdS nanotubes for highly efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 15278-15287.	10.3	73
81	Rock-salt and helix structures of silver iodides under ambient conditions. National Science Review, 2019, 6, 767-774.	9.5	11
82	Enhanced breakdown strength of aligned-sodium-titanate- nanowire/epoxy nanocomposites and their anisotropic dielectric properties. Composites Part A: Applied Science and Manufacturing, 2019, 120, 84-94.	7.6	66
83	Fault Diagnosis in Rotor Windings in DFIG using Magnetic Flux Measurement Coil Antenna. , 2019, , .		4
84	Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries. Applied Surface Science, 2019, 464, 472-478.	6.1	123
85	Two-dimensional mapping of the electric field distribution inside vacuum microgaps observed in a scanning electron microscope. Micron, 2019, 116, 93-99.	2.2	2
86	A Facile Path to Grapheneâ€Wrapped Polydopamineâ€Entwined Silicon Nanoparticles with High Electrochemical Performance. ChemPlusChem, 2019, 84, 203-209.	2.8	9
87	Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine. Composites Part A: Applied Science and Manufacturing, 2019, 118, 302-311.	7.6	169
88	Dielectric properties and thermal conductivity of epoxy resin composite modified byÂZn/ZnO/Al2O3 core–shell particles. Polymer Bulletin, 2019, 76, 3957-3970.	3.3	23
89	Dielectric properties and thermal conductivity of epoxy composites using core/shell structured Si/SiO2/Polydopamine. Composites Part B: Engineering, 2018, 140, 83-90.	12.0	90
90	Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chemical Engineering Journal, 2018, 333, 519-528.	12.7	389

#	Article	IF	Citations
91	Easy hydrothermal synthesis of multi-shelled La2O3 hollow spheres for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 1232-1237.	2.2	44
92	Detection of Rotor Inter-turn Short Circuit Fault in Doubly-fed Induction Generator using FEM Simulation. , 2018, , .		5
93	Alignment of Boron Nitride Nanofibers in Epoxy Composite Films for Thermal Conductivity and Dielectric Breakdown Strength Improvement. Nanomaterials, 2018, 8, 242.	4.1	56
94	Detection of Rotor Inter-turn Short Circuit Fault in Doubly-fed Induction Generator using FEM Simulation. , $2018, , .$		1
95	Sandwiched epoxy–alumina composites with synergistically enhanced thermal conductivity and breakdown strength. Journal of Materials Science, 2017, 52, 4299-4308.	3.7	70
96	Facile synthesis of Co 3 O 4 spheres and their unexpected high specific discharge capacity for Lithium-ion batteries. Applied Surface Science, 2017, 416, 338-343.	6.1	37
97	Epoxy/h-BN composites based on oriented boron nitride platelets with high thermally conductivity for electronic encapsulation. , 2017, , .		3
98	Dielectric and thermal properties of epoxy resins with TiO2 nanowires. Journal of Materials Science: Materials in Electronics, 2017, 28, 17871-17880.	2.2	22
99	Zinc ferrite composite material with controllable morphology and its applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 224, 125-138.	3.5	103
100	In situ polymerization of modified graphene/polyimide composite with improved mechanical and thermal properties. Journal of Materials Science: Materials in Electronics, 2017, 28, 576-581.	2.2	103
101	Thermal conductivity and electric breakdown strength properties of epoxy/ alumina /boron nitride nanosheets composites. , 2016, , .		8
102	Fabrication and characterization of OMMt/BMI/CE composites with low dielectric properties and high thermal stability for electronic packaging. Journal of Materials Science: Materials in Electronics, 2016, 27, 5592-5599.	2.2	70
103	Evaluation of Sm _{0.95} Ba _{0.05} Fe _{0.95} Ru _{0.05} O ₃ as a potential cathode material for solid oxide fuel cells. RSC Advances, 2016, 6, 34564-34573.	3.6	15
104	Adsorption and Deposition of Li ₂ O ₂ on the Pristine and Oxidized TiC Surface by First-principles Calculation. Journal of Physical Chemistry C, 2015, 119, 25684-25695.	3.1	32
105	Synthesis and characterization of \hat{I}^3 -Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material. Journal of Alloys and Compounds, 2015, 652, 346-350.	5.5	188
106	Synthesis of a bismaleimide/cyanate ester copolymer containing phenolphthalein functional group with excellent dielectric properties and thermally stable. Journal of Polymer Research, 2014, 21, 1.	2.4	28
107	Adsorption and Deposition of Li ₂ O ₂ on TiC $\{111\}$ Surface. Journal of Physical Chemistry Letters, 2014, 5, 3919-3923.	4.6	30
108	Nanocomposite polymers: Possible charging effects below inception voltage. , 2013, , .		0

#	Article	IF	CITATIONS
109	Morphology and electrical breakdown properties of LDPE-polypropylene copolymer blends. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 1741-1748.	2.1	18
110	On-line condition monitoring system of medium-voltage switchgear. , 0, , .		3
111	Simulation and analysis of high voltage circuit breaker's mechanism dynamical characteristic. , 0, , .		1