
Ranwen Ou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2602360/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermally regenerable metal-organic framework with high monovalent metal ion selectivity. Chemical Engineering Journal, 2021, 405, 127037.	6.6	31
2	Effect of oxygen plasma treatment on the nanofiltration performance of reduced graphene oxide/cellulose nanofiber composite membranes. Green Chemical Engineering, 2021, 2, 122-131.	3.3	20
3	Robust Hilly Polyamide Membrane for Fast Desalination. ACS Applied Polymer Materials, 2021, 3, 1070-1077.	2.0	12
4	A sunlight-responsive metal–organic framework system for sustainable water desalination. Nature Sustainability, 2020, 3, 1052-1058.	11.5	131
5	Photoresponsive Styrylpyrene-Modified MOFs for Gated Loading and Release of Cargo Molecules. Chemistry of Materials, 2020, 32, 10621-10627.	3.2	20
6	Sulfonated Sub-1-nm Metal–Organic Framework Channels with Ultrahigh Proton Selectivity. Journal of the American Chemical Society, 2020, 142, 9827-9833.	6.6	41
7	Unidirectional and Selective Proton Transport in Artificial Heterostructured Nanochannels with Nanoâ€ŧo‣ubnano Confined Water Clusters. Advanced Materials, 2020, 32, e2001777.	11.1	72
8	Effect of Anion Species on Ion Current Rectification Properties of Positively Charged Nanochannels. ACS Applied Materials & Interfaces, 2020, 12, 28915-28922.	4.0	21
9	Enhancement of desalination performance of thin-film nanocomposite membrane by cellulose nanofibers. Journal of Membrane Science, 2019, 592, 117363.	4.1	82
10	Monovalent Cation–Phenolic Crystals with pHâ€Driven Reversible Crystal Transformation. Chemistry - A European Journal, 2019, 25, 12281-12287.	1.7	11
11	Frontispiz: Homochiral MOF–Polymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules. Angewandte Chemie, 2019, 131, .	1.6	0
12	Frontispiece: Homochiral MOF–Polymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules. Angewandte Chemie - International Edition, 2019, 58, .	7.2	2
13	Homochiral MOF–Polymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules. Angewandte Chemie, 2019, 131, 17084-17091.	1.6	31
14	Homochiral MOF–Polymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules. Angewandte Chemie - International Edition, 2019, 58, 16928-16935.	7.2	141
15	Nitrogenâ€Rich, Wellâ€Dispersed Nanoporous Carbon Materials for Superâ€Efficient Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 1894-1900.	1.7	3
16	Fouling and cleaning of polymer-entwined graphene oxide nanocomposite membrane for forward osmosis process. Separation Science and Technology, 2019, 54, 1376-1386.	1.3	6
17	Thermo-responsive Membranes with Switchable Superhydrophilicity and Superhydrophobicity for Oil–Water Separation. RSC Smart Materials, 2019, , 362-388.	0.1	0
18	Highly permeable thermally rearranged polymer composite membranes with a graphene oxide scaffold for gas separation. Journal of Materials Chemistry A, 2018, 6, 7668-7674.	5.2	71

Ranwen Ou

#	Article	IF	CITATIONS
19	Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Science Advances, 2018, 4, eaaq0066.	4.7	368
20	Non-swelling graphene oxide-polymer nanocomposite membrane for reverse osmosis desalination. Journal of Membrane Science, 2018, 562, 47-55.	4.1	64
21	Thermoresponsive Amphoteric Metal–Organic Frameworks for Efficient and Reversible Adsorption of Multiple Salts from Water. Advanced Materials, 2018, 30, e1802767.	11.1	51
22	Water Desalination: Thermoresponsive Amphoteric Metal-Organic Frameworks for Efficient and Reversible Adsorption of Multiple Salts from Water (Adv. Mater. 34/2018). Advanced Materials, 2018, 30, 1870256.	11.1	1
23	Periodic oscillation of ion conduction of nanofluidic diodes using a chemical oscillator. Nanoscale, 2017, 9, 7297-7304.	2.8	20
24	Highly crosslinked, chlorine tolerant polymer network entwined graphene oxide membrane for water desalination. Journal of Materials Chemistry A, 2017, 5, 1533-1540.	5.2	96
25	Improvement of the Swelling Properties of Ionic Hydrogels by the Incorporation of Hydrophobic, Elastic Microfibers for Forward Osmosis Applications. Industrial & Engineering Chemistry Research, 2017, 56, 505-512.	1.8	24
26	Preparation of highâ€flux ultrafiltration membranes by blending strongly charged polymer. Journal of Applied Polymer Science, 2017, 134, .	1.3	5
27	Hydrogel-polyurethane interpenetrating network material as an advanced draw agent for forward osmosis process. Water Research, 2016, 96, 292-298.	5.3	43
28	ZIF-derived nitrogen-doped carbon/3D graphene frameworks for all-solid-state supercapacitors. RSC Advances, 2016, 6, 76575-76581.	1.7	15
29	Microfiber-polymer hydrogel monolith as forward osmosis draw agent. Journal of Membrane Science, 2016, 510, 426-436.	4.1	21
30	Robust Thermoresponsive Polymer Composite Membrane with Switchable Superhydrophilicity and Superhydrophobicity for Efficient Oil–Water Separation. Environmental Science & Technology, 2016, 50, 906-914.	4.6	200
31	Bioinspired Smart Gate-Location-Controllable Single Nanochannels: Experiment and Theoretical Simulation. ACS Nano, 2015, 9, 12264-12273.	7.3	82
32	Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane. Journal of Membrane Science, 2015, 475, 281-289.	4.1	174
33	Preparation of polyethersulfone/carbon nanotube substrate for high-performance forward osmosis membrane. Desalination, 2013, 330, 70-78.	4.0	161
34	Thermo-sensitive polyelectrolytes as draw solutions in forward osmosis process. Desalination, 2013, 318, 48-55.	4.0	103