Sandra M Blois

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2602338/publications.pdf

Version: 2024-02-01

61 2,969 27 53
papers citations h-index g-index

64 64 64 3089 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A pivotal role for galectin-1 in fetomaternal tolerance. Nature Medicine, 2007, 13, 1450-1457.	30.7	431
2	Early risk factors for miscarriage: a prospective cohort study in pregnant women. Reproductive BioMedicine Online, 2008, 17, 101-113.	2.4	188
3	Dendritic Cells: Key to Fetal Tolerance?1. Biology of Reproduction, 2007, 77, 590-598.	2.7	170
4	Depletion of CD8+ Cells Abolishes the Pregnancy Protective Effect of Progesterone Substitution with Dydrogesterone in Mice by Altering the Th1/Th2 Cytokine Profile. Journal of Immunology, 2004, 172, 5893-5899.	0.8	152
5	Lineage, Maturity, and Phenotype of Uterine Murine Dendritic Cells Throughout Gestation Indicate a Protective Role in Maintaining Pregnancy1. Biology of Reproduction, 2004, 70, 1018-1023.	2.7	146
6	Decidualization and angiogenesis in early pregnancy: unravelling the functions of DC and NK cells. Journal of Reproductive Immunology, 2011, 88, 86-92.	1.9	122
7	Prenatal Stress Enhances Susceptibility of Murine Adult Offspring toward Airway Inflammation. Journal of Immunology, 2006, 177, 8484-8492.	0.8	120
8	Antigenâ€Presenting Cells and Maternoâ€Fetal Tolerance: An Emerging Role for Dendritic Cells. American Journal of Reproductive Immunology, 2007, 58, 255-267.	1.2	107
9	Galectin-1 influences trophoblast immune evasion and emerges as a predictive factor for the outcome of pregnancy. Molecular Human Reproduction, 2013, 19, 43-53.	2.8	98
10	Neuroendocrine–immune disequilibrium and endometriosis: an interdisciplinary approach. Seminars in Immunopathology, 2007, 29, 193-210.	6.1	96
11	Interfering with Gal-1–mediated angiogenesis contributes to the pathogenesis of preeclampsia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11451-11456.	7.1	93
12	In vivo dendritic cell depletion reduces breeding efficiency, affecting implantation and early placental development in mice. Journal of Molecular Medicine, 2008, 86, 999-1011.	3.9	74
13	Involvement of galectin-1 in reproduction: past, present and future. Human Reproduction Update, 2014, 20, 175-193.	10.8	67
14	Analysis of HLA-G in Maternal Plasma, Follicular Fluid, and Preimplantation Embryos Reveal an Asymmetric Pattern of Expression. Journal of Immunology, 2008, 180, 4330-4337.	0.8	52
15	Role of Dendritic Cells in the Regulation of Maternal Immune Responses to the Fetus During Mammalian Gestation. Immunological Investigations, 2008, 37, 499-533.	2.0	47
16	Uterine NK Cells Are Critical in Shaping DC Immunogenic Functions Compatible with Pregnancy Progression. PLoS ONE, 2012, 7, e46755.	2.5	47
17	Interaction between dendritic cells and natural killer cells during pregnancy in mice. Journal of Molecular Medicine, 2008, 86, 837-852.	3.9	46
18	Endometriosis research: animal models for the study of a complex disease. Journal of Reproductive Immunology, 2010, 86, 141-147.	1.9	46

#	Article	IF	CITATIONS
19	Substance P Is a Key Mediator of Stress-Induced Protection from Allergic Sensitization via Modified Antigen Presentation. Journal of Immunology, 2011, 186, 848-855.	0.8	45
20	NKG2D Blockade Inhibits Poly(I:C)-Triggered Fetal Loss in Wild Type but Not in IL-10â^'/â^' Mice. Journal of Immunology, 2013, 190, 3639-3647.	0.8	45
21	Peripheral blood galectin-1-expressing T and natural killer cells in normal pregnancy and preeclampsia. Clinical Immunology, 2011, 139, 48-56.	3.2	42
22	Pregnancy Galectinology: Insights Into a Complex Network of Glycan Binding Proteins. Frontiers in Immunology, 2019, 10, 1166.	4.8	39
23	Neutralization of LPS or blockage of TLR4 signaling prevents stress-triggered fetal loss in murine pregnancy. Journal of Molecular Medicine, 2011, 89, 689-699.	3.9	36
24	CXCR4+ Dendritic cells promote angiogenesis during embryo implantation in mice. Angiogenesis, 2013, 16, 417-427.	7.2	36
25	Evidence for Differential Glycosylation of Trophoblast Cell Types. Molecular and Cellular Proteomics, 2016, 15, 1857-1866.	3.8	32
26	Profiling Lgals9 Splice Variant Expression at the Fetal-Maternal Interface: Implications in Normal and Pathological Human Pregnancy1. Biology of Reproduction, 2013, 88, 22.	2.7	31
27	Galectin signature in normal pregnancy and preeclampsia. Journal of Reproductive Immunology, 2014, 101-102, 127-134.	1.9	31
28	NK cell-derived IL-10 is critical for DC-NK cell dialogue at the maternal-fetal interface. Scientific Reports, 2017, 7, 2189.	3.3	30
29	Interaction of Pregnancy-Specific Glycoprotein 1 With Integrin $\hat{l}^*5\hat{l}^21$ Is a Modulator of Extravillous Trophoblast Functions. Cells, 2019, 8, 1369.	4.1	30
30	Galectin-3 deficiency in pregnancy increases the risk of fetal growth restriction (FGR) via placental insufficiency. Cell Death and Disease, 2020, 11, 560.	6.3	28
31	Balanced levels of nerve growth factor are required for normal pregnancy progression. Reproduction, 2014, 148, 179-189.	2.6	27
32	Differential immunoregulation in successful oocyte donation pregnancies compared with naturally conceived pregnancies. Journal of Reproductive Immunology, 2014, 101-102, 96-103.	1.9	26
33	Getting too sweet: galectin-1 dysregulation in gestational diabetes mellitus. Molecular Human Reproduction, 2014, 20, 644-649.	2.8	25
34	Decidual Angiogenesis and Placental Orientation Are Altered in Mice Heterozygous for a Dominant Loss-of-Function Gja1 (Connexin43) Mutation1. Biology of Reproduction, 2013, 89, 111.	2.7	24
35	Neuroendocrine circuitry and endometriosis: progesterone derivative dampens corticotropin-releasing hormone-induced inflammation by peritoneal cells in vitro. Journal of Molecular Medicine, 2010, 88, 267-278.	3.9	23
36	The upside of natural killers. Nature Medicine, 2008, 14, 1184-1185.	30.7	22

#	Article	IF	Citations
37	Galectins in angiogenesis: consequences for gestation. Journal of Reproductive Immunology, 2015, 108, 33-41.	1.9	22
38	An Impaired Breeding Phenotype in Mice with a Genetic Deletion of Beta-2 Microglobulin and Diminished MHC Class I Expression: Role in Reproductive Fitness1. Biology of Reproduction, 2007, 77, 274-279.	2.7	21
39	Early Expression of Pregnancy-Specific Glycoprotein 22 (PSG22) by Trophoblast Cells Modulates Angiogenesis in Mice1. Biology of Reproduction, 2012, 86, 191.	2.7	21
40	Glycan characterization of pregnancy-specific glycoprotein 1 and its identification as a novel Galectin-1 ligand. Glycobiology, 2020, 30, 895-909.	2.5	21
41	Administration of Interferon-Alpha in Mice Provokes Peripheral and Central Modulation of Immune Cells, Accompanied by Behavioral Effects. Neuropsychobiology, 2008, 58, 211-222.	1.9	19
42	Dendritic cells regulate angiogenesis associated with liver fibrogenesis. Angiogenesis, 2014, 17, 119-128.	7.2	19
43	High Expression of Survivin and Down-Regulation of Stat-3 Characterize the Feto-Maternal Interface in Failing Murine Pregnancies During the Implantation Period. Placenta, 2007, 28, 650-657.	1.5	17
44	The chimeraâ€type galectinâ€3 is a positive modulator of trophoblast functions with dysregulated expression in gestational diabetes mellitus. American Journal of Reproductive Immunology, 2020, 84, e13311.	1.2	17
45	Altered Glycosylation Contributes to Placental Dysfunction Upon Early Disruption of the NK Cell-DC Dynamics. Frontiers in Immunology, 2020, 11, 1316.	4.8	15
46	Differential Spatiotemporal Patterns of Galectin Expression are a Hallmark of Endotheliochorial Placentation. American Journal of Reproductive Immunology, 2016, 75, 317-325.	1.2	14
47	Medawar's PostEra: Galectins Emerged as Key Players During Fetal-Maternal Glycoimmune Adaptation. Frontiers in Immunology, 2021, 12, 784473.	4.8	13
48	Elevated systemic galectin-1 levels characterize HELLP syndrome. Journal of Reproductive Immunology, 2016, 114, 38-43.	1.9	12
49	Immunobiology of Gestational Diabetes Mellitus in Post-Medawar Era. Frontiers in Immunology, 2021, 12, 758267.	4.8	12
50	A potential pathophysiological role for galectins and the renin–angiotensin system in preeclampsia. Cellular and Molecular Life Sciences, 2015, 72, 39-50.	5.4	11
51	Endogenous lysophosphatidic acid participates in vascularisation and decidualisation at the maternal–fetal interface in the rat. Reproduction, Fertility and Development, 2017, 29, 2112.	0.4	11
52	Role of galectin-glycan circuits in reproduction: from healthy pregnancy to preterm birth (PTB). Seminars in Immunopathology, 2020, 42, 469-486.	6.1	11
53	Cell-intrinsic regulation of murine dendritic cell function and survival by prereceptor amplification of glucocorticoid. Blood, 2013, 122, 3288-3297.	1.4	9
54	Placental Glycoredox Dysregulation Associated with Disease Progression in an Animal Model of Superimposed Preeclampsia. Cells, 2021, 10, 800.	4.1	7

#	Article	IF	CITATIONS
55	Phenotyping placental oxygenation in Lgals1 deficient mice using 19F MRI. Scientific Reports, 2021, 11, 2126.	3.3	4
56	Galectin-Levels Are Elevated in Infants Born Preterm Due to Amniotic Infection and Rapidly Decline in the Neonatal Period. Frontiers in Immunology, 2020, 11, 599104.	4.8	3
57	Acceleration of TAA-Induced Liver Fibrosis by Stress Exposure Is Associated with Upregulation of Nerve Growth Factor and Glycopattern Deviations. International Journal of Molecular Sciences, 2021, 22, 5055.	4.1	3
58	Targeted disruption of galectin 3 in mice delays the first wave of spermatogenesis and increases germ cell apoptosis. Cellular and Molecular Life Sciences, 2021, 78, 3621-3635.	5.4	2
59	Examination of the Contributions of Maternal/Placental-Derived Galectin-1 to Pregnancy Outcome. Methods in Molecular Biology, 2022, 2442, 603-619.	0.9	2
60	Expression of the alternative splicing regulator Rbfox2 during placental development is differentially regulated in preeclampsia mouse models. American Journal of Reproductive Immunology, 2021, 86, e13491.	1.2	1
61	Soluble CD146 is increased in preeclampsia and interacts with galectin-1 to regulate trophoblast migration through VEGFR2 receptor. F&S Science, 2022, 3, 84-94.	0.9	1