Sudipta Basu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2602168/publications.pdf Version: 2024-02-01

SUDIDTA RASU

#	Article	IF	CITATIONS
1	Chimeric nanoparticles for targeting mitochondria in cancer cells. Nanoscale Advances, 2022, 4, 1112-1118.	2.2	4
2	γâ€Resorcyclic Acidâ€Based AIEgens for Illuminating Endoplasmic Reticulum**. Chemistry - A European Journal, 2022, 28, .	1.7	2
3	Small molecule NSAID derivatives for impairing powerhouse in cancer cells. Bioorganic and Medicinal Chemistry, 2022, 64, 116759.	1.4	2
4	Small molecule-mediated induction of endoplasmic reticulum stress in cancer cells. RSC Medicinal Chemistry, 2021, 12, 1604-1611.	1.7	6
5	Nanoparticle-Mediated Routing of Antibiotics into Mitochondria in Cancer Cells. ACS Applied Bio Materials, 2021, 4, 6799-6806.	2.3	6
6	Mitochondrial Impairment by Cyanine-Based Small Molecules Induces Apoptosis in Cancer Cells. ACS Medicinal Chemistry Letters, 2020, 11, 23-28.	1.3	8
7	Inducing endoplasmic reticulum stress in cancer cells using graphene oxide-based nanoparticles. Nanoscale Advances, 2020, 2, 4887-4894.	2.2	16
8	Spatial targeting of Bcl-2 on endoplasmic reticulum and mitochondria in cancer cells by lipid nanoparticles. Journal of Materials Chemistry B, 2020, 8, 4259-4266.	2.9	18
9	Unbiased Phenotype-Based Screen Identifies Therapeutic Agents Selective for Metastatic Prostate Cancer. Frontiers in Oncology, 2020, 10, 594141.	1.3	5
10	Lipid Nanoparticle-Mediated Induction of Endoplasmic Reticulum Stress in Cancer Cells. ACS Applied Bio Materials, 2019, 2, 3992-4001.	2.3	27
11	SCAN1-TDP1 trapping on mitochondrial DNA promotes mitochondrial dysfunction and mitophagy. Science Advances, 2019, 5, eaax9778.	4.7	43
12	Supramolecular self-assembly of triazine-based small molecules: targeting the endoplasmic reticulum in cancer cells. Nanoscale, 2019, 11, 3326-3335.	2.8	32
13	Graphene oxide nanocells for impairing topoisomerase and DNA in cancer cells. Journal of Materials Chemistry B, 2019, 7, 4191-4197.	2.9	7
14	Hydrazide–Hydrazone Small Molecules as AIEgens: Illuminating Mitochondria in Cancer Cells. Chemistry - A European Journal, 2019, 25, 8229-8235.	1.7	26
15	Polymer conjugated graphene-oxide nanoparticles impair nuclear DNA and Topoisomerase I in cancer. Nanoscale Advances, 2019, 1, 4965-4971.	2.2	8
16	Polyethylenimine Coated Graphene Oxide Nanoparticles for Targeting Mitochondria in Cancer Cells. ACS Applied Bio Materials, 2019, 2, 14-19.	2.3	33
17	Cerberus Nanoparticles: Cotargeting of Mitochondrial DNA and Mitochondrial Topoisomerase I in Breast Cancer Cells. ACS Applied Nano Materials, 2018, 1, 2195-2205.	2.4	16
18	Impairing Powerhouse in Colon Cancer Cells by Hydrazide–Hydrazone-Based Small Molecule. ACS Omega, 2018, 3, 1470-1481.	1.6	27

Sudipta Basu

#	Article	IF	CITATIONS
19	Iron-Catalyzed Batch/Continuous Flow C–H Functionalization Module for the Synthesis of Anticancer Peroxides. Journal of Organic Chemistry, 2018, 83, 1358-1368.	1.7	39
20	Self-Assembled Glycosylated Chalcone–Boronic Acid Nanodrug Exhibits Anticancer Activity through Mitochondrial Impairment. ACS Applied Bio Materials, 2018, 1, 347-355.	2.3	0
21	Hyaluronic acid cloaked oleic acid nanoparticles inhibit MAPK signaling with sub-cellular DNA damage in colon cancer cells. Journal of Materials Chemistry B, 2017, 5, 3658-3666.	2.9	9
22	Electrostatically driven resonance energy transfer in "cationic―biocompatible indium phosphide quantum dots. Chemical Science, 2017, 8, 3879-3884.	3.7	55
23	Aqueous phase sensing of cyanide ions using a hydrolytically stable metal–organic framework. Chemical Communications, 2017, 53, 1253-1256.	2.2	56
24	Cisplatin-induced self-assembly of graphene oxide sheets into spherical nanoparticles for damaging sub-cellular DNA. Chemical Communications, 2017, 53, 1409-1412.	2.2	16
25	Hyaluronic Acid Layered Chimeric Nanoparticles: Targeting MAPK-PI3K Signaling Hub in Colon Cancer Cells. ACS Omega, 2017, 2, 7868-7880.	1.6	14
26	Drug-Triggered Self-Assembly of Linear Polymer into Nanoparticles for Simultaneous Delivery of Hydrophobic and Hydrophilic Drugs in Breast Cancer Cells. ACS Omega, 2017, 2, 8730-8740.	1.6	13
27	Selfâ€Assembled Oleic Acid Nanoparticle Mediated Inhibition of Mitogenâ€Activated Protein Kinase Signaling in Combination with DNA Damage in Cancer Cells. ChemNanoMat, 2016, 2, 201-211.	1.5	5
28	Nanoparticle-Mediated Mitochondrial Damage Induces Apoptosis in Cancer. ACS Applied Materials & Interfaces, 2016, 8, 13218-13231.	4.0	64
29	Engineering and <i>In Vitro</i> Evaluation of Acid Labile Cholesterol Tethered MG132 Nanoparticle for Targeting Ubiquitin-Proteasome System in Cancer. ChemistrySelect, 2016, 1, 5099-5106.	0.7	0
30	Dual Drug Conjugated Nanoparticle for Simultaneous Targeting of Mitochondria and Nucleus in Cancer Cells. ACS Applied Materials & Interfaces, 2015, 7, 7584-7598.	4.0	105
31	Chimeric Nanoparticle: A Platform for Simultaneous Targeting of Phosphatidylinositol-3-Kinase Signaling and Damaging DNA in Cancer Cells. ACS Applied Materials & Interfaces, 2015, 7, 18327-18335.	4.0	16
32	Dual drug loaded vitamin D3 nanoparticle to target drug resistance in cancer. RSC Advances, 2014, 4, 57271-57281.	1.7	11
33	Supramolecular Nanoparticles That Target Phosphoinositide-3-Kinase Overcome Insulin Resistance and Exert Pronounced Antitumor Efficacy. Cancer Research, 2013, 73, 6987-6997.	0.4	17
34	Cholesterol-tethered platinum II-based supramolecular nanoparticle increases antitumor efficacy and reduces nephrotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11294-11299.	3.3	121
35	Rationally engineered polymeric cisplatin nanoparticles for improved antitumor efficacy. Nanotechnology, 2011, 22, 265101.	1.3	27
36	Nanoparticle-mediated targeting of MAPK signaling predisposes tumor to chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7957-7961.	3.3	116

Sudipta Basu

#	Article	IF	CITATIONS
37	Glycome and Transcriptome Regulation of Vasculogenesis. Circulation, 2009, 120, 1883-1892.	1.6	24
38	Targeting oncogenic signaling pathways by exploiting nanotechnology. Cell Cycle, 2009, 8, 3480-3487.	1.3	17
39	Vasculogenesis, a story of glycome and transcriptomal regulation. FASEB Journal, 2009, 23, 934.2.	0.2	0