
Skarlatos G Dedos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2601457/publications.pdf Version: 2024-02-01

SKAPLATOS C. DEDOS

#	Article	IF	CITATIONS
1	Neuronal microRNAs safeguard ER Ca2+ homeostasis and attenuate the unfolded protein response upon stress. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	5
2	Dataset and validation of the approaches to study skills inventory for students. Scientific Data, 2021, 8, 158.	5.3	2
3	Neuronal microRNAs modulate TREK two-pore domain K ⁺ channel expression and current density. RNA Biology, 2020, 17, 651-662.	3.1	7
4	Evaluation of Antifouling Potential and Ecotoxicity of Secondary Metabolites Derived from Red Algae of the Genus Laurencia. Marine Drugs, 2019, 17, 646.	4.6	13
5	Should I stay or should I go? The settlement-inducing protein complex guides barnacle settlement decisions. Journal of Experimental Biology, 2018, 221, .	1.7	10
6	Probing the settlement signals of <i>Amphibalanus amphitrite</i> . Biofouling, 2018, 34, 492-506.	2.2	3
7	Refining a steroidogenic model: an analysis of RNA-seq datasets from insect prothoracic glands. BMC Genomics, 2018, 19, 537.	2.8	8
8	Antibodies to inositol 1,4,5-triphosphate receptor 1 in patients with cerebellar disease. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e306.	6.0	9
9	A fragment of the alarmin prothymosin α as a novel biomarker in murine models of bacteria-induced sepsis. Oncotarget, 2017, 8, 48635-48649.	1.8	6
10	Combinatory annotation of cell membrane receptors and signalling pathways of Bombyx mori prothoracic glands. Scientific Data, 2016, 3, 160073.	5.3	7
11	Reassessing ecdysteroidogenic cells from the cell membrane receptors' perspective. Scientific Reports, 2016, 6, 20229.	3.3	12
12	A missense mutation in Fgfr1 causes ear and skull defects in hush puppy mice. Mammalian Genome, 2011, 22, 290-305.	2.2	21
13	Regulation of Inositol 1,4,5-Trisphosphate Receptors by cAMP Independent of cAMP-dependent Protein Kinase. Journal of Biological Chemistry, 2010, 285, 12979-12989.	3.4	46
14	IP ₃ receptors: some lessons from DT40 cells. Immunological Reviews, 2009, 231, 23-44.	6.0	45
15	Activation of IP3 receptors by synthetic bisphosphate ligands. Chemical Communications, 2009, , 1204.	4.1	27
16	Protein kinase A and C are "Gatekeepers―of capacitative Ca2+ entry in the prothoracic gland cells of the silkworm, Bombyx mori. Journal of Insect Physiology, 2008, 54, 878-882.	2.0	6
17	Counting Functional Inositol 1,4,5-Trisphosphate Receptors into the Plasma Membrane. Journal of Biological Chemistry, 2008, 283, 751-755.	3.4	35
18	Selective coupling of type 6 adenylyl cyclase with type 2 IP3 receptors mediates direct sensitization of IP3 receptors by cAMP. Journal of Cell Biology, 2008, 183, 297-311.	5.2	93

SKARLATOS G DEDOS

#	Article	IF	CITATIONS
19	Selective coupling of type 6 adenylyl cyclase with type 2 IP ₃ receptors mediates direct sensitization of IP ₃ receptors by cAMP. Journal of General Physiology, 2008, 132, i5-i5.	1.9	1
20	Different Ca2+ signalling cascades manifested by mastoparan in the prothoracic glands of the tobacco hornworm,Manduca sexta, and the silkworm,Bombyx mori. Archives of Insect Biochemistry and Physiology, 2007, 65, 52-64.	1.5	4
21	A Systematic Study of C-Glucoside Trisphosphates as myo-Inositol Trisphosphate Receptor Ligands. Synthesis of β-C-Glucoside Trisphosphates Based on the Conformational Restriction Strategy. Journal of Medicinal Chemistry, 2006, 49, 1900-1909.	6.4	15
22	Synthesis of Adenophostin A Analogues Conjugating an Aromatic Group at the 5â€~-Position as Potent IP3 Receptor Ligands. Journal of Medicinal Chemistry, 2006, 49, 5750-5758.	6.4	22
23	Signalling from parathyroid hormone. Biochemical Society Transactions, 2006, 34, 515-517.	3.4	6
24	Ca2+ Entry Through Plasma Membrane IP3 Receptors. Science, 2006, 313, 229-233.	12.6	170
25	Synthesis of 4,8-anhydro-d-glycero-d-ido-nonanitol 1,6,7-trisphosphate as a novel IP3 receptor ligand using a stereoselective radical cyclization reaction based on a conformational restriction strategy. Tetrahedron, 2005, 61, 3697-3707.	1.9	17
26	Rapid functional assays of recombinant IP3 receptors. Cell Calcium, 2005, 38, 45-51.	2.4	33
27	Regulation of capacitative Ca2+ entry by prothoracicotropic hormone in the prothoracic glands of the silkworm,Bombyx mori. Journal of Experimental Zoology Part A, Comparative Experimental Biology, 2005, 303A, 101-112.	1.3	9
28	Adenophostin A and analogues modified at the adenine moiety: synthesis, conformational analysis and biological activity. Organic and Biomolecular Chemistry, 2005, 3, 245.	2.8	25
29	Inhibition of cAMP signalling cascade-mediated Ca2+ influx by a prothoracicostatic peptide (Mas-MIP I) via dihydropyridine-sensitive Ca2+ channels in the prothoracic glands of the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2003, 33, 219-228.	2.7	13
30	Ca2+ as second messenger in PTTH-stimulated prothoracic glands of the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2002, 32, 1625-1634.	2.7	30
31	Basic pattern of fluctuation in hemolymph PTTH titers during larval–pupal and pupal–adult development of the silkworm, Bombyx mori. General and Comparative Endocrinology, 2002, 127, 181-189.	1.8	50
32	Fenoxycarb levels and their effects on general and juvenile hormone esterase activity in the hemolymph of the silkworm, Bombyx mori. Pesticide Biochemistry and Physiology, 2002, 73, 174-187.	3.6	8
33	Induction of dauer pupae by fenoxycarb in the silkworm, Bombyx mori. Journal of Insect Physiology, 2002, 48, 857-865.	2.0	9
34	Acceleration of Pupal-Adult Development by Fenoxycarb in the Silkworm, Bombyx mori. Zoological Science, 2001, 18, 771-777.	0.7	7
35	Action Kinetics of a Prothoracicostatic Peptide from Bombyx mori and Its Possible Signaling Pathway. General and Comparative Endocrinology, 2001, 122, 98-108.	1.8	15
36	Involvement of Calcium, Inositol-1,4,5 Trisphosphate and Diacylglycerol in the Prothoracicotropic Hormone-Stimulated Ecdysteroid Synthesis and Secretion in the Prothoracic Glands of Bombyx mori. Zoological Science, 2001, 18, 1245-1251.	0.7	14

SKARLATOS G DEDOS

#	Article	IF	CITATIONS
37	Disturbance of adult eclosion by fenoxycarb in the silkworm, Bombyx mori. Journal of Insect Physiology, 1999, 45, 257-264.	2.0	14
38	Differences between recombinant PTTH and crude brain extracts in cAMP-mediated ecdysteroid secretion from the prothoracic glands of the silkworm, Bombyx mori. Journal of Insect Physiology, 1999, 45, 415-422.	2.0	21
39	Induction of dauer larvae by application of fenoxycarb early in the 5th instar of the silkworm, Bombyx mori. Journal of Insect Physiology, 1999, 45, 769-775.	2.0	18
40	Downregulation of the cAMP signal transduction cascade in the prothoracic glands is responsible for the fenoxycarb-mediated induction of permanent 5th instar larvae in Bombyx mori. Insect Biochemistry and Molecular Biology, 1999, 29, 723-729.	2.7	7
41	Interactions between Ca2+ and cAMP in ecdysteroid secretion from the prothoracic glands of Bombyx mori. Molecular and Cellular Endocrinology, 1999, 154, 63-70.	3.2	14
42	A new cerebral factor stimulates IP3 levels in the prothoracic glands of Bombyx mori. Insect Biochemistry and Molecular Biology, 1998, 28, 767-774.	2.7	8
43	Prostaglandins Do not Release Egg-Laying Behaviour in the Silkmoth, Bombyx mori. Zoological Science, 1997, 14, 135-140.	0.7	2
44	Testicular Ecdysteroids in the Silkmoth, Bombyx mori Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1996, 72, 34-37.	3.8	11
45	Effects of Fenoxycarb on the Secretory Activity of the Prothoracic Glands in the Fifth Instar of the Silkworm,Bombyx mori. General and Comparative Endocrinology, 1996, 104, 213-224.	1.8	31
46	Testicular Ecdysteroid Level in the Silkmoth, Bombyx mori, with Special Reference to Heat Treatment during the Wandering Stage. Zoological Science, 1995, 12, 783-788.	0.7	6