Tao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2601436/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep Reinforcement Learning for Combinatorial Optimization: Covering Salesman Problems. IEEE Transactions on Cybernetics, 2022, 52, 13142-13155.	9.5	26
2	State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression. Energy, 2022, 239, 121986.	8.8	36
3	High Overload Power Supply System and Its Energy Synchronization Control Method for Short-Term High-Energy Pulse Load. IEEE Transactions on Smart Grid, 2022, 13, 849-860.	9.0	2
4	A deep belief network approach to remaining capacity estimation for lithium-ion batteries based on charging process features. Journal of Energy Storage, 2022, 48, 103825.	8.1	29
5	Resilience Assessment for Microgrid with Pre-Position and Reconfiguration of Emergency Distribution Generations under Natural Hazard. International Transactions on Electrical Energy Systems, 2022, 2022, 1-12.	1.9	1
6	An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator. Energy, 2022, 257, 124725.	8.8	5
7	Deep Reinforcement Learning for Multiobjective Optimization. IEEE Transactions on Cybernetics, 2021, 51, 3103-3114.	9.5	118
8	A Coevolutionary Framework for Constrained Multiobjective Optimization Problems. IEEE Transactions on Evolutionary Computation, 2021, 25, 102-116.	10.0	230
9	Weighted Indicator-Based Evolutionary Algorithm for Multimodal Multiobjective Optimization. IEEE Transactions on Evolutionary Computation, 2021, 25, 1064-1078.	10.0	63
10	A Dual-Population-Based Evolutionary Algorithm for Constrained Multiobjective Optimization. IEEE Transactions on Evolutionary Computation, 2021, 25, 739-753.	10.0	75
11	Multiobjective routing optimization of mobile charging vehicles for UAV power supply guarantees. Computers and Industrial Engineering, 2021, 162, 107714.	6.3	13
12	A tri-level optimization model for power grid defense with the consideration of post-allocated DGs against coordinated cyber-physical attacks. International Journal of Electrical Power and Energy Systems, 2021, 130, 106903.	5.5	19
13	Robust Model Predictive Control for Energy Management of Isolated Microgrids Based on Interval Prediction. Discrete Dynamics in Nature and Society, 2021, 2021, 1-14.	0.9	4
14	Asymmetric Information in Military Microgrid Confrontations—Evaluation Metric and Influence Analysis. Energies, 2020, 13, 1954.	3.1	5
15	Reinvestigation of evolutionary many-objective optimization: Focus on the Pareto knee front. Information Sciences, 2020, 522, 193-213.	6.9	24
16	Twoâ€stage robust optimal scheduling of cooperative microgrids based on expected scenarios. IET Generation, Transmission and Distribution, 2020, 14, 6741-6753.	2.5	3
17	Knee Point-Guided Multiobjective Optimization Algorithm for Microgrid Dynamic Energy Management. Complexity, 2020, 2020, 1-11.	1.6	9
19	A Deep Learning Method with Ensemble Learning for Capacity Estimation of Lithium-ion Battery. , 2020, ,		2

Tao Zhang

#	Article	IF	CITATIONS
19	Optimal Deception Strategies in Power System Fortification against Deliberate Attacks. Energies, 2019, 12, 342.	3.1	7
20	A Method for Interval Prediction of Satellite Battery State of Health Based on Sample Entropy. IEEE Access, 2019, 7, 141549-141561.	4.2	22
21	Robust Optimization for Microgrid Defense Resource Planning and Allocation Against Multi-Period Attacks. IEEE Transactions on Smart Grid, 2019, 10, 5841-5850.	9.0	30
22	COMPOSITION OF ONE-DIMENSIONAL CONTINUOUS FUNCTIONS AND THEIR RIEMANN–LIOUVILLE FRACTIONAL INTEGRAL. Fractals, 2019, 27, 1950065.	3.7	1
23	Multi-scenario microgrid optimization using an evolutionary multi-objective algorithm. Swarm and Evolutionary Computation, 2019, 50, 100570.	8.1	23
24	Detection of Voltage Anomalies in Spacecraft Storage Batteries Based on a Deep Belief Network. Sensors, 2019, 19, 4702.	3.8	8
25	Evolutionary Many-Constraint Optimization: An Exploratory Analysis. Lecture Notes in Computer Science, 2019, , 165-176.	1.3	10
26	Localized Weighted Sum Method for Many-Objective Optimization. IEEE Transactions on Evolutionary Computation, 2018, 22, 3-18.	10.0	226
27	Interval prediction of solar power using an Improved Bootstrap method. Solar Energy, 2018, 159, 97-112.	6.1	76
28	A Robust and Model Predictive Control Based Energy Management Scheme for Grid-Connected Microgrids. , 2018, , .		3
29	Cooperative co-evolution with improved differential grouping method for large-scale global optimisation. International Journal of Bio-Inspired Computation, 2018, 12, 214.	0.9	9
30	Short-Term Load Interval Prediction Using a Deep Belief Network. Energies, 2018, 11, 2744.	3.1	3
31	Short-Term Load Forecasting Using a Novel Deep Learning Framework. Energies, 2018, 11, 1554.	3.1	15
32	Energy Management Model of Charging Station Micro-Grid Considering Random Arrival of Electric Vehicles. , 2018, , .		9
33	Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g. Energies, 2018, 11, 743.	3.1	15
34	A Multi-Time Scale Robust Energy Management Scheme for Grid-Connected Micro-Grid. , 2018, , .		4
35	Evolutionary Many-Objective Optimization: A Comparative Study of the State-of-the-Art. IEEE Access, 2018, 6, 26194-26214.	4.2	129
36	Short-Term Load Forecasting Based on RBM and NARX Neural Network. Lecture Notes in Computer Science, 2018, , 193-203.	1.3	2

TAO ZHANG

#	Article	IF	CITATIONS
37	On the effect of reference point in MOEA/D for multi-objective optimization. Applied Soft Computing Journal, 2017, 58, 25-34.	7.2	70
38	Multi-Objective Optimization of Hybrid Renewable Energy System with Load Forecasting. , 2017, , .		4
39	Dâ€Q frame predictive current control methods for inverter stage of solid state transformer. IET Power Electronics, 2017, 10, 687-696.	2.1	6
40	Operation Management of a Hybrid Renewable Energy Systems Base on Multi-Objective Optimal under Uncertainties. , 2017, , .		2
41	Solar Power Prediction in Smart Grid Based on NWP Data and an Improved Boosting Method. , 2017, , .		7
42	Pareto adaptive penalty-based boundary intersection method for multi-objective optimization. Information Sciences, 2017, 414, 158-174.	6.9	38
43	Optimal microgrid operation based on model predictive control framework. , 2017, , .		7
44	Robust model predictive control for energy management of isolated microgrids. , 2017, , .		16
45	Multi-Objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm. Energies, 2017, 10, 674.	3.1	69
46	Effect of Transfer Functions in Deep Belief Network for Short-Term Load Forecasting. Communications in Computer and Information Science, 2017, , 511-522.	0.5	1
47	Short-term load forecasting based on a improved deep belief network. , 2016, , .		15
48	Predictive direct power control for rectifier stage of solid state transformer. , 2016, , .		4
49	Sliding mode control of solid state transformer using a three-level hysteresis function. Journal of Central South University, 2016, 23, 2063-2074.	3.0	4
50	A multi-objective co-evolutionary algorithm for energy-efficient scheduling on a green data center. Computers and Operations Research, 2016, 75, 103-117.	4.0	64
51	Decomposition-Based Algorithms Using Pareto Adaptive Scalarizing Methods. IEEE Transactions on Evolutionary Computation, 2016, 20, 821-837.	10.0	222
52	An enhanced preference-inspired co-evolutionary algorithm using orthogonal design and anÎμ-dominance archiving strategy. Engineering Optimization, 2016, 48, 415-436.	2.6	2
53	Short-Term Forecasting of Wind Power Generation Based on the Similar Day and Elman Neural Network. , 2015, , .		10
54	Multi-objective optimal design of hybrid renewable energy systems using preference-inspired coevolutionary approach. Solar Energy, 2015, 118, 96-106.	6.1	112

TAO ZHANG

#	Article	IF	CITATIONS
55	Stochastic Model Predictive Control Based Economic Dispatch for Hybrid Energy System Including Wind and Energy Storage Devices. , 2015, , .		2
56	Triple-state hysteresis direct power control for three phase PWM rectifier. , 2015, , .		1
57	Dynamic design of sales territories. Computers and Operations Research, 2015, 56, 84-92.	4.0	42
58	SGEESS: Smart green energy-efficient scheduling strategy with dynamic electricity price for data center. Journal of Systems and Software, 2015, 108, 23-38.	4.5	19
59	Optimal operation of a smart residential microgrid based on model predictive control by considering uncertainties and storage impacts. Solar Energy, 2015, 122, 1052-1065.	6.1	124
60	Pareto Adaptive Scalarising Functions for Decomposition Based Algorithms. Lecture Notes in Computer Science, 2015, , 248-262.	1.3	9
61	An Improved Dispatch Strategy of a Grid-Connected Hybrid Energy System with High Penetration Level of Renewable Energy. Mathematical Problems in Engineering, 2014, 2014, 1-18.	1.1	1
62	MPC Based Approach for Reliable Power System Energy Management with High Penetration Level of Renewable Energy Resources. Advanced Materials Research, 2014, 986-987, 371-376.	0.3	1
63	PICEA-g using an enhanced fitness assignment method. , 2014, , .		3
64	Optimal Scheduling of Track Maintenance on a Railway Network. Quality and Reliability Engineering International, 2013, 29, 285-297.	2.3	52
65	Stochastic programming approach for earthquake disaster relief mobilization with multiple objectives. Journal of Systems Engineering and Electronics, 2013, 24, 642-654.	2.2	5
66	An enhanced MOEA/D using uniform directions and a pre-organization procedure. , 2013, , .		8
67	An OOPN-based approach for modeling and analyzing the capability of maintenance support network. , 2012, , .		Ο
68	Reliability-Based Route Optimization of a Transportation Network with Random Arc Capacities and Time Threshold. Lecture Notes in Computer Science, 2011, , 143-156.	1.3	1
69	Reliability-based Optimal Maintenance Scheduling by Considering Maintenance Effect to Reduce Cost. Quality and Reliability Engineering International, 2005, 21, 203-220.	2.3	20
70	Solving Economic Dispatch Problem in Energy Internet Using a Two-Level Stochastic Gossip-Based Consensus Algorithm. Advanced Materials Research, 0, 986-987, 2162-2166.	0.3	1