Yu Cong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/260126/publications.pdf

Version: 2024-02-01

		172207	1	82168	
69	2,753	29		51	
papers	citations	h-index		g-index	
70	70	70		2322	
70	70	70		2322	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Synthesis of Highâ€Quality Diesel with Furfural and 2â€Methylfuran from Hemicellulose. ChemSusChem, 2012, 5, 1958-1966.	3.6	177
2	Synthesis of renewable high-density fuels using cyclopentanone derived from lignocellulose. Chemical Communications, 2014, 50, 2572.	2.2	143
3	Aqueous phase hydrogenation of levulinic acid to 1,4-pentanediol. Chemical Communications, 2014, 50, 1414.	2.2	136
4	Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan. Chemical Communications, 2013, 49, 5727.	2.2	116
5	Integrated Conversion of Cellulose to High-Density Aviation Fuel. Joule, 2019, 3, 1028-1036.	11.7	113
6	Solventâ€Free Synthesis of C ₁₀ and C ₁₁ Branched Alkanes from Furfural and Methyl Isobutyl Ketone. ChemSusChem, 2013, 6, 1149-1152.	3.6	107
7	Synthesis of Diesel or Jet Fuel Range Cycloalkanes with 2-Methylfuran and Cyclopentanone from Lignocellulose. Energy & Lignocellulose.	2.5	104
8	Synthesis of diesel and jet fuel range alkanes with furfural and ketones from lignocellulose under solvent free conditions. Green Chemistry, 2014, 16, 4879-4884.	4.6	97
9	Hydrodeoxygenation of furans over Pd-FeOx/SiO2 catalyst under atmospheric pressure. Applied Catalysis B: Environmental, 2017, 201, 266-277.	10.8	91
10	Coordinatively Unsaturated Al ³⁺ Sites Anchored Subnanometric Ruthenium Catalyst for Hydrogenation of Aromatics. ACS Catalysis, 2017, 7, 5987-5991.	5.5	88
11	Synthesis of Diesel and Jet Fuel Range Alkanes with Furfural and Angelica Lactone. ACS Catalysis, 2017, 7, 5880-5886.	5.5	85
12	Synthesis of renewable diesel range alkanes by hydrodeoxygenation of furans over Ni/H \hat{l}^2 under mild conditions. Green Chemistry, 2014, 16, 594-599.	4.6	79
13	Making JPâ€10 Superfuel Affordable with a Lignocellulosic Platform Compound. Angewandte Chemie - International Edition, 2019, 58, 12154-12158.	7.2	78
14	Lignosulfonate-based acidic resin for the synthesis of renewable diesel and jet fuel range alkanes with 2-methylfuran and furfural. Green Chemistry, 2015, 17, 3644-3652.	4.6	73
15	Synthesis of gasoline and jet fuel range cycloalkanes and aromatics from poly(ethylene terephthalate) waste. Green Chemistry, 2019, 21, 2709-2719.	4.6	61
16	Synthesis of high density aviation fuel with cyclopentanol derived from lignocellulose. Scientific Reports, 2015, 5, 9565.	1.6	60
17	Synthesis of Renewable High-Density Fuel with Cyclopentanone Derived from Hemicellulose. ACS Sustainable Chemistry and Engineering, 2017, 5, 1812-1817.	3.2	60
18	Synthesis of Jet-Fuel Range Cycloalkanes from the Mixtures of Cyclopentanone and Butanal. Industrial & Samp; Engineering Chemistry Research, 2015, 54, 11825-11837.	1.8	55

#	Article	IF	CITATIONS
19	Protonated titanate nanotubes as a highly active catalyst for the synthesis of renewable diesel and jet fuel range alkanes. Applied Catalysis B: Environmental, 2015, 170-171, 124-134.	10.8	55
20	Synthesis of High-Density Aviation Fuel with Cyclopentanol. ACS Sustainable Chemistry and Engineering, 2016, 4, 6160-6166.	3.2	50
21	Dualâ€bed catalyst system for the direct synthesis of high density aviation fuel with cyclopentanone from lignocellulose. AICHE Journal, 2016, 62, 2754-2761.	1.8	44
22	Synthesis of Renewable Triketones, Diketones, and Jetâ€Fuel Range Cycloalkanes with 5â€Hydroxymethylfurfural and Ketones. ChemSusChem, 2017, 10, 711-719.	3.6	42
23	Synthesis of jet fuel range cycloalkanes with diacetone alcohol from lignocellulose. Green Chemistry, 2016, 18, 5751-5755.	4.6	41
24	Selective Production of Renewable <i>para</i> à€Xylene by Tungsten Carbide Catalyzed Atomâ€Economic Cascade Reactions. Angewandte Chemie - International Edition, 2018, 57, 1808-1812.	7.2	39
25	Industrially scalable and cost-effective synthesis of 1,3-cyclopentanediol with furfuryl alcohol from lignocellulose. Green Chemistry, 2016, 18, 3607-3613.	4.6	37
26	Production of Renewable Jet Fuel Range Branched Alkanes with Xylose and Methyl Isobutyl Ketone. Industrial & Samp; Engineering Chemistry Research, 2014, 53, 13618-13625.	1.8	36
27	Highly efficient synthesis of 5-hydroxymethylfurfural with carbohydrates over renewable cyclopentanone-based acidic resin. Green Chemistry, 2017, 19, 1855-1860.	4.6	35
28	Direct synthesis of gasoline and diesel range branched alkanes with acetone from lignocellulose. Green Chemistry, 2016, 18, 3707-3711.	4.6	33
29	Synthesis of renewable diesel with 2-methylfuran and angelica lactone derived from carbohydrates. Green Chemistry, 2016, 18, 1218-1223.	4.6	32
30	A palladium single-atom catalyst toward efficient activation of molecular oxygen for cinnamyl alcohol oxidation. Chinese Journal of Catalysis, 2020, 41, 1812-1817.	6.9	31
31	Dehydration of Carbohydrates to 5-Hydroxymethylfurfural over Lignosulfonate-Based Acidic Resin. ACS Sustainable Chemistry and Engineering, 2018, 6, 5645-5652.	3.2	30
32	Synthesis of Renewable C ₈ â€"C ₁₀ Alkanes with Angelica Lactone and Furfural from Carbohydrates. ACS Sustainable Chemistry and Engineering, 2018, 6, 6126-6134.	3.2	29
33	Synthesis of high-density aviation fuels with methyl benzaldehyde and cyclohexanone. Green Chemistry, 2018, 20, 3753-3760.	4.6	29
34	Synthesis of bio-based methylcyclopentadiene via direct hydrodeoxygenation of 3-methylcyclopent-2-enone derived from cellulose. Nature Communications, 2021, 12, 46.	5.8	27
35	Synthesis of 1,4â€Cyclohexanedimethanol, 1,4â€Cyclohexanedicarboxylic Acid and 1,2â€Cyclohexanedicarboxylates from Formaldehyde, Crotonaldehyde and Acrylate/Fumarate. Angewandte Chemie - International Edition, 2018, 57, 6901-6905.	7.2	26
36	Catalytic conversion of isophorone to jet-fuel range aromatic hydrocarbons over a MoO _x /SiO ₂ catalyst. Chemical Communications, 2015, 51, 11876-11879.	2.2	24

#	Article	IF	Citations
37	Catalytic decomposition of propellant N ₂ O Over Ir/Al ₂ O ₃ catalyst. AICHE Journal, 2016, 62, 3973-3981.	1.8	23
38	Rhodium Supported on Silica-Stabilized Alumina for Catalytic Decomposition of N2O. Catalysis Letters, 2011, 141, 128-135.	1.4	22
39	Synthesis of $1,4\hat{a}\in\mathbb{C}$ yclohexanedimethanol, $1,4\hat{a}\in\mathbb{C}$ yclohexanedicarboxylic Acid and $1,2\hat{a}\in\mathbb{C}$ yclohexanedicarboxylates from Formaldehyde, Crotonaldehyde and Acrylate/Fumarate. Angewandte Chemie, 2018, 130, 7017-7021.	1.6	22
40	Sustainable production of pyromellitic acid with pinacol and diethyl maleate. Green Chemistry, 2017, 19, 1663-1667.	4.6	21
41	Synthesis of Decaline-Type Thermal-Stable Jet Fuel Additives with Cycloketones. ACS Sustainable Chemistry and Engineering, 2019, 7, 17354-17361.	3.2	21
42	Fluoride-modified ZSM-5 for endothermic catalytic cracking of n-decane. Microporous and Mesoporous Materials, 2019, 288, 109616.	2.2	20
43	Highâ€Loading Singleâ€Atom Copper Catalyst Supported on Coordinatively Unsaturated Al ₂ O ₃ for Selective Synthesis of Homoallylboronates. ChemSusChem, 2020, 13, 3115-3121.	3.6	20
44	Synthesis of jet fuel additive with cyclopentanone. Journal of Energy Chemistry, 2019, 29, 23-30.	7.1	19
45	Direct Synthesis of Methylcyclopentadiene with 2,5-Hexanedione over Zinc Molybdates. ACS Catalysis, 2021, 11, 4810-4820.	5 . 5	19
46	Direct synthesis of a high-density aviation fuel using a polycarbonate. Green Chemistry, 2021, 23, 912-919.	4.6	19
47	Sustainable Production of <i>o</i> â€Xylene from Biomassâ€Derived Pinacol and Acrolein. ChemSusChem, 2017, 10, 2880-2885.	3.6	18
48	Making JPâ€10 Superfuel Affordable with a Lignocellulosic Platform Compound. Angewandte Chemie, 2019, 131, 12282-12286.	1.6	17
49	Solid Acid-Catalyzed Dehydration of Pinacol Derivatives in Ionic Liquid: Simple and Efficient Access to Branched 1,3-Dienes. ACS Catalysis, 2017, 7, 2576-2582.	5. 5	16
50	Direct synthesis of a jet fuel range dicycloalkane by the aqueous phase hydrodeoxygenation of polycarbonate. Green Chemistry, 2021, 23, 3693-3699.	4.6	16
51	One-Pot Catalytic Transformation of Dicyclopentadiene to High Energy Density Fuel Exo-tetrahydrotricyclopentadiene. Topics in Catalysis, 2015, 58, 350-358.	1.3	13
52	Synthesis of jet fuel rang cycloalkane from isophorone with glycerol as a renewable hydrogen source. Catalysis Today, 2017, 298, 16-20.	2.2	13
53	Direct Synthesis of Renewable Dodecanol and Dodecane with Methyl Isobutyl Ketone over Dualâ€Bed Catalyst Systems. ChemSusChem, 2017, 10, 825-829.	3.6	12
54	Synthesis of jet fuel range high-density dicycloalkanes with methyl benzaldehyde and acetone. Sustainable Energy and Fuels, 2020, 4, 5560-5567.	2.5	12

#	Article	IF	CITATIONS
55	Sustainable Production of Safe Plasticizers with Bio-Based Fumarates and 1,3-Dienes. Industrial & Engineering Chemistry Research, 2020, 59, 7367-7374.	1.8	12
56	Production of 1,2-Cyclohexanedicarboxylates from Diacetone Alcohol and Fumarates. ACS Sustainable Chemistry and Engineering, 2019, 7, 2980-2988.	3.2	10
57	Synthesis of jet fuel range polycyclic alkanes and aromatics from furfuryl alcohol and isoprene. Green Chemistry, 2022, 24, 3130-3136.	4.6	10
58	Selective Production of Renewable <i>para</i> â€Xylene by Tungsten Carbide Catalyzed Atomâ€Economic Cascade Reactions. Angewandte Chemie, 2018, 130, 1826-1830.	1.6	7
59	Synthesis of jet fuel range high-density polycycloalkanes with vanillin and cyclohexanone. Sustainable Energy and Fuels, 2022, 6, 1616-1624.	2.5	6
60	Styrene hydrogenation over Ni–La/Al2O3 catalysts: The impact of added La on active metal dispersion. Chemical Physics Letters, 2021, 775, 138604.	1.2	5
61	Synthesis of renewable alkylated decalins with <i>p</i> -quinone and 2-methyl-2,4-pentanediol. Sustainable Energy and Fuels, 2022, 6, 834-840.	2.5	5
62	Synthesis of renewable aviation fuel additives with aromatic aldehydes and methyl isobutyl ketone under solvent-free conditions. Sustainable Energy and Fuels, 2021, 5, 556-563.	2.5	4
63	Synthesis of jet fuel and diesel range cycloalkanes with 2-methylfuran and benzaldehyde. Sustainable Energy and Fuels, 2022, 6, 1156-1163.	2.5	4
64	Heat-Induced Transformation between Nanospheres and Nanofibers of Boehmite., 2006,,.		1
65	Synthesis of Silicalite-1 Membranes on the Surface of Stainless Steel. Advanced Materials Research, 0, 233-235, 1524-1528.	0.3	1
66	Synthesis of Branched Octahydro-Indene with Methyl Benzaldehyde and Methyl Isobutyl Ketone. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	1
67	Production of Copolyester Monomers from Plantâ€Based Acrylate and Acetaldehyde. Angewandte Chemie - International Edition, 2022, 61, .	7.2	1
68	Synthesis of renewable alkylated naphthalenes with benzaldehyde and angelica lactone. Green Chemistry, 2021, 23, 5474-5480.	4.6	0
69	Production of Copolyester Monomers from Plantâ€Based Acrylate and Acetaldehyde. Angewandte Chemie, 0, , .	1.6	0