Marat M Yusupov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/260091/publications.pdf

Version: 2024-02-01

45213 70961 10,440 97 41 90 citations h-index g-index papers 99 99 99 7941 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Crystal Structure of the Ribosome at 5.5 A Resolution. Science, 2001, 292, 883-896.	6.0	1,789
2	The Structure of the Eukaryotic Ribosome at 3.0 Ã Resolution. Science, 2011, 334, 1524-1529.	6.0	1,006
3	X-ray Crystal Structures of 70S Ribosome Functional Complexes. Science, 1999, 285, 2095-2104.	6.0	567
4	The Path of Messenger RNA through the Ribosome. Cell, 2001, 106, 233-241.	13.5	554
5	A new system for naming ribosomal proteins. Current Opinion in Structural Biology, 2014, 24, 165-169.	2.6	481
6	Structural basis for the inhibition of the eukaryotic ribosome. Nature, 2014, 513, 517-522.	13.7	434
7	Crystal Structure of the Eukaryotic Ribosome. Science, 2010, 330, 1203-1209.	6.0	370
8	One core, two shells: bacterial and eukaryotic ribosomes. Nature Structural and Molecular Biology, 2012, 19, 560-567.	3.6	345
9	A new understanding of the decoding principle on the ribosome. Nature, 2012, 484, 256-259.	13.7	293
10	Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nature Structural and Molecular Biology, 2010, 17, 555-560.	3.6	276
11	Structural basis for messenger RNA movement on the ribosome. Nature, 2006, 444, 391-394.	13.7	245
12	Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes. EMBO Journal, 2008, 27, 1609-1621.	3.5	202
13	Evidence for rRNA 2′-O-methylation plasticity: Control of intrinsic translational capabilities of human ribosomes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12934-12939.	3.3	197
14	Structure of the 30S translation initiation complex. Nature, 2008, 455, 416-420.	13.7	194
15	The crystal structure of the dimerization initiation site of genomic HIV-1 RNA reveals an extended duplex with two adenine bulges. Structure, 1999, 7, 1439-1449.	1.6	157
16	Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3812-3816.	3.3	152
17	Aminoglycoside interactions and impacts on the eukaryotic ribosome. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10899-E10908.	3.3	148
18	Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code. Nature Communications, 2016, 7, 10457.	5.8	141

#	Article	IF	CITATIONS
19	Structural rearrangements of the ribosome at the tRNA proofreading step. Nature Structural and Molecular Biology, 2010, 17, 1072-1078.	3.6	135
20	Conformational transition of initiation factor 2 from the GTP- to GDP-bound state visualized on the ribosome. Nature Structural and Molecular Biology, 2005, 12, 1145-1149.	3.6	130
21	Structured mRNAs Regulate Translation Initiation by Binding to the Platform of the Ribosome. Cell, 2007, 130, 1019-1031.	13.5	129
22	Translocation of tRNA during protein synthesis. FEBS Letters, 2002, 514, 11-16.	1.3	128
23	Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction. Nature Communications, 2019, 10, 2519.	5.8	124
24	A structural view of translation initiation in bacteria. Cellular and Molecular Life Sciences, 2009, 66, 423-436.	2.4	123
25	Crystal structure of the 80S yeast ribosome. Current Opinion in Structural Biology, 2012, 22, 759-767.	2.6	120
26	High-Resolution Structure of the Eukaryotic 80S Ribosome. Annual Review of Biochemistry, 2014, 83, 467-486.	5.0	110
27	The fidelity of translation initiation: reciprocal activities of eIF1, IF3 and YciH. EMBO Journal, 2006, 25, 196-210.	3.5	105
28	Structural insights into the translational infidelity mechanism. Nature Communications, 2015, 6, 7251.	5.8	100
29	Translational Operator of mRNA on the Ribosome: How Repressor Proteins Exclude Ribosome Binding. Science, 2005, 308, 120-123.	6.0	99
30	Crystallization of 70 S ribosomes and 30 S ribosomal subunits from Thermus thermophilus. FEBS Letters, 1987, 220, 319-322.	1.3	86
31	Identification of an RNA-Protein Bridge Spanning the Ribosomal Subunit Interface. Science, 1999, 285, 2133-2135.	6.0	82
32	Molecular insights into protein synthesis with proline residues. EMBO Reports, 2016, 17, 1776-1784.	2.0	73
33	New Structural Insights into Translational Miscoding. Trends in Biochemical Sciences, 2016, 41, 798-814.	3.7	64
34	Structures and dynamics of hibernating ribosomes from <i>Staphylococcus aureus</i> mediated by intermolecular interactions of <scp>HPF</scp> . EMBO Journal, 2017, 36, 2073-2087.	3.5	62
35	The ribosome prohibits the G•U wobble geometry at the first position of the codon–anticodon helix. Nucleic Acids Research, 2016, 44, gkw431.	6.5	59
36	Messenger RNA conformations in the ribosomal E site revealed by Xâ€ray crystallography. EMBO Reports, 2007, 8, 846-850.	2.0	58

#	Article	IF	CITATIONS
37	Crystal Structure of Hypusine-Containing Translation Factor eIF5A Bound to a Rotated Eukaryotic Ribosome. Journal of Molecular Biology, 2016, 428, 3570-3576.	2.0	53
38	The Amaryllidaceae Alkaloid Haemanthamine Binds the Eukaryotic Ribosome to Repress Cancer Cell Growth. Structure, 2018, 26, 416-425.e4.	1.6	51
39	New structural insights into the decoding mechanism: Translation infidelity via a G·U pair with Watson–Crick geometry. FEBS Letters, 2013, 587, 1848-1857.	1.3	50
40	Bulk-solvent correction in large macromolecular structures. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1299-1301.	2.5	48
41	Recognition of Watson-Crick base pairs: constraints and limits due to geometric selection and tautomerism. F1000prime Reports, 2014, 6, 19.	5.9	47
42	Interactions of the ribosome with mRNA and tRNA. Current Opinion in Structural Biology, 2010, 20, 325-332.	2.6	45
43	Preliminary X-ray investigation of 70 S ribosome crystals from Thermus thermophilus. Journal of Molecular Biology, 1989, 209, 327-328.	2.0	43
44	Amicoumacin A induces cancer cell death by targeting the eukaryotic ribosome. Scientific Reports, 2016, 6, 27720.	1.6	42
45	Inhibition of Eukaryotic Translation by the Antitumor Natural Product Agelastatin A. Cell Chemical Biology, 2017, 24, 605-613.e5.	2.5	41
46	Structure of the 70S ribosome from human pathogen <i>Staphylococcus aureus</i> Nucleic Acids Research, 2016, 44, gkw933.	6.5	39
47	Structural Insights into the Role of Diphthamide on Elongation Factor 2 in mRNA Reading-Frame Maintenance. Journal of Molecular Biology, 2018, 430, 2677-2687.	2.0	38
48	Synthesis facilitates an understanding of the structural basis for translation inhibition by the lissoclimides. Nature Chemistry, 2017, 9, 1140-1149.	6.6	36
49	Ribosomal Initiation Complexes Probed by Toeprinting and Effect of trans-Acting Translational Regulators in Bacteria. Methods in Molecular Biology, 2009, 540, 247-263.	0.4	35
50	Crystal structure of eukaryotic ribosome and its complexes with inhibitors. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160184.	1.8	34
51	Cryo-EM structure of the hibernating Thermus thermophilus 100S ribosome reveals a protein-mediated dimerization mechanism. Nature Communications, 2018, 9, 4179.	5.8	34
52	The multiple flavors of GoU pairs in RNA. Journal of Molecular Recognition, 2019, 32, e2782.	1.1	30
53	Mechanism of ribosome shutdown by RsfS in Staphylococcus aureus revealed by integrative structural biology approach. Nature Communications, 2020, 11, 1656.	5.8	30
54	Tautomeric G•U pairs within the molecular ribosomal grip and fidelity of decoding in bacteria. Nucleic Acids Research, 2018, 46, 7425-7435.	6.5	29

#	Article	IF	CITATIONS
55	Insights into the origin of the nuclear localization signals in conserved ribosomal proteins. Nature Communications, 2015, 6, 7382.	5.8	26
56	Accuracy mechanism of eukaryotic ribosome translocation. Nature, 2021, 600, 543-546.	13.7	26
57	Are there proteins between the ribosomal subunits?. FEBS Letters, 1986, 197, 229-233.	1.3	25
58	Primer Selection by HIV-1 Reverse Transcriptase on RNA $\hat{a}\in$ tRNA3Lysand DNA $\hat{a}\in$ tRNA3LysHybrids. Journal of Molecular Biology, 1996, 261, 315-321.	2.0	21
59	Structure of the Ribosome at 5.5 A Resolution and Its Interactions with Functional Ligands. Cold Spring Harbor Symposia on Quantitative Biology, 2001, 66, 57-66.	2.0	21
60	Proteins of the Thermus thermophilusribosome Purification of several individual proteins and crystallization of protein TL7. FEBS Letters, 1987, 220, 227-230.	1.3	20
61	Sequence of tRNAAspformThermus thermophilusHB8. Nucleic Acids Research, 1993, 21, 4399-4399.	6.5	20
62	The location of protein S8 and surrounding elements of 16S rRNA in the 70S ribosome from combined use of directed hydroxyl radical probing and X-ray crystallography. Rna, 2000, 6, 717-729.	1.6	20
63	Thermus thermophilus ribosomes for crystallographic studies. Biochimie, 1991, 73, 887-897.	1.3	18
64	Crystal Structures of the uL3 Mutant Ribosome: Illustration of the Importance of Ribosomal Proteins for Translation Efficiency. Journal of Molecular Biology, 2016, 428, 2195-2202.	2.0	17
65	A new crystalline form of 30 S ribosomal subunits from Thermus thermophilus. FEBS Letters, 1988, 238, 113-115.	1.3	16
66	Understanding the role of intermolecular interactions between lissoclimides and the eukaryotic ribosome. Nucleic Acids Research, 2019, 47, 3223-3232.	6.5	15
67	Ribosome biochemistry in crystal structure determination. Rna, 2015, 21, 771-773.	1.6	14
68	Cryoâ€EM structure of the ribosome functional complex of the human pathogen <i>StaphylococcusÂaureus</i> at 3.2Âà resolution. FEBS Letters, 2020, 594, 3551-3567.	1.3	14
69	Synthesis and ribosome binding properties of model mRNAs modified with undecagold cluster. Bioconjugate Chemistry, 1993, 4, 549-553.	1.8	10
70	E-site drug specificity of the human pathogen <i>Candida albicans</i> ribosome. Science Advances, 2022, 8, .	4.7	10
71	Purification and crystallization of components of the protein-synthesizing system from Thermus thermophilus. Journal of Crystal Growth, 1991, 110, 228-236.	0.7	9
72	Stabilization of Ribosomal RNA of the Small Subunit by Spermidine in Staphylococcus aureus. Frontiers in Molecular Biosciences, 2021, 8, 738752.	1.6	7

#	Article	IF	CITATIONS
73	A glimpse on Staphylococcus aureus translation machinery and its control. Molecular Biology, 2016, 50, 477-488.	0.4	5
74	NMR assignments of the N-terminal domain of Staphylococcus aureus hibernation promoting factor (SaHPF). Biomolecular NMR Assignments, 2018, 12, 85-89.	0.4	5
75	Isolation and crystallization of a chimeric $Q\hat{l}^2$ replicase containing Thermus thermophilus EF-Ts. Biochemistry (Moscow), 2010, 75, 989-994.	0.7	4
76	Backbone and side chain NMR assignments for the ribosome Elongation Factor P (EF-P) from Staphylococcus aureus. Biomolecular NMR Assignments, 2018, 12, 351-355.	0.4	4
77	Dimerization of long hibernation promoting factor from Staphylococcus aureus: Structural analysis and biochemical characterization. Journal of Structural Biology, 2020, 209, 107408.	1.3	4
78	Inhibition of the Eukaryotic 80S Ribosome as a Potential Anticancer Therapy: A Structural Perspective. Cancers, 2021, 13, 4392.	1.7	4
79	Crystals of Thermus thermophilus tRNAAsp Complexed with its Cognate Aspartyl-tRNA Synthetase Have a Solvent Content of 75%. Comparison with Other Aminoacylation Systems. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 1382-1386.	2.5	3
80	Reconstitution of Functionally Active Thermus thermophilus 30S Ribosomal Subunit from Ribosomal 16S RNA and Ribosomal Proteins. Methods in Molecular Biology, 2016, 1320, 303-314.	0.4	3
81	Elongation Factor P: New Mechanisms of Function and an Evolutionary Diversity of Translation Regulation. Molecular Biology, 2019, 53, 501-512.	0.4	3
82	Solution structure of the N-terminal domain of the Staphylococcus aureus hibernation promoting factor. Journal of Biomolecular NMR, 2019, 73, 223-227.	1.6	3
83	Structural dynamics of a spinlabeled ribosome elongation factor P (EF-P) from Staphylococcus aureus by EPR spectroscopy. SN Applied Sciences, $2019, 1, 1$.	1.5	3
84	Backbone and side chain NMR assignments for the ribosome binding factor A (RbfA) from Staphylococcus aureus. Biomolecular NMR Assignments, 2019, 13, 27-30.	0.4	3
85	A Path to the Atomic-Resolution Structures of Prokaryotic and Eukaryotic Ribosomes. Biochemistry (Moscow), 2021, 86, 926-941.	0.7	3
86	NMR and crystallographic structural studies of the Elongation factor P from Staphylococcus aureus. European Biophysics Journal, 2020, 49, 223-230.	1.2	2
87	Interaction of bacterial ribosomes with mRNA and tRNA as studied by X-ray crystallographic analysis. , 2011, , 45-55.		2
88	Posttranslational modification of Elongation Factor P from StaphylococcusÂaureus. FEBS Open Bio, 2020, 10, 1342-1347.	1.0	2
89	Crystallization of the dimerization-initiation site of genomic HIV-1 RNA: preliminary crystallographic results. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 281-284.	2.5	1
90	Crystal structure of the eukaryotic 80S ribosome. , 2011, , 75-81.		1

#	Article	IF	CITATIONS
91	Studies on the Structure and Function of Ribosomes by Combined Use of Chemical Probing and X-Ray Crystallography., 0,, 127-150.		1
92	Is RsfS a Hibernation Factor or a Ribosome Biogenesis Factor?. Biochemistry (Moscow), 2022, 87, 500-510.	0.7	1
93	Messenger RNA movement on the ribosome. Molecular Biology, 2007, 41, 240-249.	0.4	O
94	Ribosomes Structure and Mechanisms in Regulation of Protein Synthesis Part I. Journal of Molecular Biology, 2016, 428, 2133.	2.0	0
95	Editorial. Journal of Molecular Biology, 2016, 428, 3557.	2.0	O
96	X-Ray Analysis of Prokaryotic and Eukaryotic Ribosomes. , 2012, , 1-25.		0
97	Recent Progress in Ribosome Structure Studies. , 2014, , 23-43.		0