Hikaru Fujita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2600827/publications.pdf Version: 2024-02-01

Ηικλριι Ειπτλ

#	Article	IF	CITATIONS
1	A Novel Acid-Catalyzed <i>O</i> -Benzylating Reagent with the Smallest Unit of Imidate Structure. Organic Letters, 2012, 14, 5026-5029.	4.6	75
2	Study of the Reactivities of Acid-Catalyzed O-Benzylating Reagents Based on Structural Isomers of 1,3,5-Triazine. Journal of Organic Chemistry, 2015, 80, 11200-11205.	3.2	24
3	A Practical Method for p-Methoxybenzylation of Hydroxy Groups Using 2,4,6-Tris(p-methoxybenzyloxy)-1,3,5-triazine (TriBOT-PM). Synthesis, 2013, 45, 2989-2997.	2.3	23
4	<i>O</i> â€Benzylation of Carboxylic Acids Using 2,4,6â€Tris(benzyloxy)â€1,3,5â€triazine (TriBOT) under Acidic or Thermal Conditions. European Journal of Organic Chemistry, 2015, 2015, 7997-8002.	2.4	20
5	Development of a Triazineâ€Based <i>tert</i> â€Butylating Reagent, TriATâ€ <i>t</i> Bu. European Journal of Organic Chemistry, 2016, 2016, 4093-4098.	2.4	20
6	<i>N</i> , <i>N′</i> â€Dimethylated Benzyloxytriazinedione: A Stable Solid Reagent for Acidâ€Catalyzed <i>O</i> â€Benzylation. European Journal of Organic Chemistry, 2017, 2017, 833-839.	2.4	16
7	Annulated bacteriochlorins for near-infrared photophysical studies. New Journal of Chemistry, 2019, 43, 7209-7232.	2.8	16
8	Bacteriochlorinâ€bis(spermine) conjugate affords an effective photodynamic action to eradicate microorganisms. Journal of Biophotonics, 2020, 13, e201960061.	2.3	15
9	Design, Synthesis, and Utility of Defined Molecular Scaffolds. Organics, 2021, 2, 161-273.	1.3	14
10	Development of acid-catalyzed fluorous benzylating reagents based on a triazinedione core. Journal of Fluorine Chemistry, 2016, 190, 68-74.	1.7	12
11	Study of <i>O</i> -Allylation Using Triazine-Based Reagents. Chemical and Pharmaceutical Bulletin, 2017, 65, 112-115.	1.3	10
12	Chromogenic agents built around a multifunctional double-triazine framework for enzymatically triggered cross-linking under physiological conditions. New Journal of Chemistry, 2020, 44, 3856-3867.	2.8	10
13	Enzymatically triggered chromogenic cross-linking agents under physiological conditions. New Journal of Chemistry, 2020, 44, 719-743.	2.8	9
14	Triazine-Based Cationic Leaving Group: Synergistic Driving Forces for Rapid Formation of Carbocation Species. Journal of Organic Chemistry, 2018, 83, 4568-4580.	3.2	8
15	Development of Triazinone-Based Condensing Reagents for Amide Formation. Journal of Organic Chemistry, 2019, 84, 15042-15051.	3.2	8
16	Development of highly electron-deficient and less sterically-hindered phosphine ligands possessing 1,3,5-triazinyl groups. Molecular Catalysis, 2018, 445, 87-93.	2.0	7
17	Substitution of the Dimethylamino Group in Gramines and One-Pot Cyclization to Tetrahydro-β-carbolines Using a Triazine-Based Activating Agent. Journal of Organic Chemistry, 2019, 84, 8380-8391.	3.2	7
18	New molecular design for blue BODIPYs. New Journal of Chemistry, 2019, 43, 7233-7242.	2.8	7

Hikaru Fujita

#	Article	IF	CITATIONS
19	One-Pot Preparation of Oxazol-5(4 <i>H</i>)-ones from Amino Acids in Aqueous Solvents. Chemical and Pharmaceutical Bulletin, 2012, 60, 907-912.	1.3	5
20	Development of a Storable Triazinone-Based Reagent for <i>O</i> - <i>p</i> -Methoxybenzylation under Mild Heating Conditions. Organic Letters, 2019, 21, 3093-3097.	4.6	5
21	Preparation of Alkyl Ethers with Diallyltriazinedioneâ€Type Alkylating Agents (ATTACKsâ€R) Under Acid Catalysis. European Journal of Organic Chemistry, 2019, 2019, 4436-4446.	2.4	4
22	Development of a triazinedione-based dehydrative condensing reagent containing 4-(dimethylamino)pyridine as an acyl transfer catalyst. Organic and Biomolecular Chemistry, 2021, 19, 4712-4719.	2.8	3
23	Novel Alkylating Reagents Designed by the Characteristics of 1,3,5-Triazines. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 1023-1034.	0.1	3
24	Nucleophilic substitution reactions of unbranched alkyl amines using triazine reagents. Tetrahedron Letters, 2022, 93, 153692.	1.4	2
25	Synthesis and characterization of tetraphenylammonium salts. Nature Communications, 2022, 13, 2537.	12.8	2
26	A versatile iodo(iii)etherification of terminal ethynylsilanes using BF3–OiPr2 and alkyl benzyl ethers. Organic and Biomolecular Chemistry, 2021, 19, 3825-3828.	2.8	1
27	Peptide-based scaffolds for in vivo immobilization and enzyme attachment in therapeutic applications. , 2020, , .		1
28	Cooperation of the Neutral and the Cationic Leaving Group Pathways in Acid-Catalyzed O-Benzylation of TriBOT. Journal of Organic Chemistry, 2018, 83, 10684-10687.	3.2	0
29	Conjugation of 4-(dimethylamino)pyridine to primary amines in aqueous buffer solutions using an N-hydroxysuccinimide ester reagent. Tetrahedron Letters, 2021, 81, 153343.	1.4	0
30	Synthesis of <i>N</i> -Aminated Salts of Aliphatic <i>tert</i> -Amines, (Trialkyl)amidines, and (Pentaalkyl)guanidines by Electrophilic Amination in an Ethereal Solvent. Chemical and Pharmaceutical Bulletin, 2022, 70, 85-88.	1.3	0