
Warren D Shlomchik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2600797/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resident memory T cells form during persistent antigen exposure leading to allograft rejection. Science Immunology, 2021, 6, .	11.9	43
2	T cell exhaustion and a failure in antigen presentation drive resistance to the graft-versus-leukemia effect. Nature Communications, 2020, 11, 4227.	12.8	23
3	Tissue-Derived IL-33 Is a Critical Local Signal That Targets Th1 Cells in the Small Intestine to Sustain Graft Versus Host Disease in the Absence of IL-12. Blood, 2020, 136, 1-2.	1.4	0
4	Long-term follow-up of a single institution pilot study of sirolimus, tacrolimus, and short course methotrexate for graft versus host disease prophylaxis in mismatched unrelated donor allogeneic stem cell transplantation. Annals of Hematology, 2019, 98, 237-240.	1.8	2
5	In vivo dynamics of T cells and their interactions with dendritic cells in mouse cutaneous graft-versus-host disease. Blood Advances, 2019, 3, 2082-2092.	5.2	4
6	Cross-dressed dendritic cells sustain effector T cell responses in islet and kidney allografts. Journal of Clinical Investigation, 2019, 130, 287-294.	8.2	39
7	PD-L1 Prevents the Development of Autoimmune Heart Disease in Graft-versus-Host Disease. Journal of Immunology, 2018, 200, 834-846.	0.8	23
8	Bim regulates the survival and suppressive capability of CD8+ FOXP3+ regulatory T cells during murine GVHD. Blood, 2018, 132, 435-447.	1.4	31
9	Donor SIRPα polymorphism modulates the innate immune response to allogeneic grafts. Science Immunology, 2017, 2, .	11.9	92
10	Differential requirements for myeloid leukemia IFN-γ conditioning determine graft-versus-leukemia resistance and sensitivity. Journal of Clinical Investigation, 2017, 127, 2765-2776.	8.2	18
11	Graft-infiltrating host dendritic cells play a key role in organ transplant rejection. Nature Communications, 2016, 7, 12623.	12.8	101
12	Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β. Nature Immunology, 2016, 17, 414-421.	14.5	190
13	Identifying Tissue-Resident Memory T Cells in Graft-Versus-Host Disease. Blood, 2016, 128, 4544-4544.	1.4	2
14	Mechanism and Activity of ILC2 Cells Post Allo-BMT. Blood, 2016, 128, 1155-1155.	1.4	0
15	Naà Ve T Cell Depletion of PBSC Grafts Results in Very Low Rates of Chronic Gvhd and High Survival. Blood, 2016, 128, 668-668.	1.4	1
16	Identifying the Clonal Origins of Gvhd-Causing T Cells. Blood, 2016, 128, 497-497.	1.4	3
17	Outcomes of acute leukemia patients transplanted with naive T cell–depleted stem cell grafts. Journal of Clinical Investigation, 2015, 125, 2677-2689.	8.2	232
18	Engineering Human Peripheral Blood Stem Cell Grafts that Are Depleted of NaÃ⁻ve T Cells and Retain Functional Pathogen-Specific Memory T Cells. Biology of Blood and Marrow Transplantation, 2014, 20, 705-716.	2.0	93

#	Article	IF	CITATIONS
19	Non-self recognition by monocytes initiates allograft rejection. Journal of Clinical Investigation, 2014, 124, 3579-3589.	8.2	173
20	Cognate antigen directs CD8+ T cell migration to vascularized transplants. Journal of Clinical Investigation, 2013, 123, 2663-2671.	8.2	94
21	Blast Crisis CML Cells Require IFN-Î ³ Conditioning For Effective GVL Whereas Chronic Phase CML Cells Do Not: An Explanation For Chronic Phase CML GVL-Sensitivity. Blood, 2013, 122, 2013-2013.	1.4	0
22	Profound Depletion of Host Conventional Dendritic Cells, Plasmacytoid Dendritic Cells, and B Cells Does Not Prevent Graft-versus-Host Disease Induction. Journal of Immunology, 2012, 188, 3804-3811.	0.8	69
23	Langerhans cells are not required for graft-versus-host disease. Blood, 2011, 117, 697-707.	1.4	39
24	Mechanisms of antigen presentation to T cells in murine graft-versus-host disease: cross-presentation and the appearance of cross-presentation. Blood, 2011, 118, 6426-6437.	1.4	50
25	Memory T cells from minor histocompatibility antigen–vaccinated and virus-immune donors improve GVL and immune reconstitution. Blood, 2011, 118, 5965-5976.	1.4	49
26	A repertoire-independent and cell-intrinsic defect in murine GVHD induction by effector memory T cells. Blood, 2011, 118, 6209-6219.	1.4	39
27	Graft-versus-Leukemia (GVL) against Mouse Blast-Crisis Chronic Myelogenous Leukemia (BC-CML) and Chronic-Phase Chronic Myelogenous Leukemia (CP-CML): Shared Mechanisms of T Cell Killing, but Programmed Death Ligands Render CP-CML and Not BC-CML GVL Resistant. Journal of Immunology, 2011, 187, 1653-1663.	0.8	26
28	Graft-versus-Host Disease Is Independent of Innate Signaling Pathways Triggered by Pathogens in Host Hematopoietic Cells. Journal of Immunology, 2011, 186, 230-241.	0.8	62
29	NCI First International Workshop on The Biology, Prevention, and Treatment of Relapse After Allogeneic Hematopoietic Stem Cell Transplantation: Report from the Committee on the Biology Underlying Recurrence of Malignant Disease following Allogeneic HSCT: Graft-versus-Tumor/Leukemia Reaction. Biology of Blood and Marrow Transplantation, 2010, 16, 565-586.	2.0	107
30	An Innate Response to Allogeneic Nonself Mediated by Monocytes. Journal of Immunology, 2009, 183, 7810-7816.	0.8	94
31	Effects of donor T-cell trafficking and priming site on graft-versus-host disease induction by naive and memory phenotype CD4 T cells. Blood, 2008, 111, 5242-5251.	1.4	75
32	CD8+ but not CD4+ T cells require cognate interactions with target tissues to mediate GVHD across only minor H antigens, whereas both CD4+ and CD8+ T cells require direct leukemic contact to mediate GVL. Blood, 2008, 111, 3884-3892.	1.4	55
33	Effector memory CD4+ T cells mediate graft-versus-leukemia without inducing graft-versus-host disease. Blood, 2008, 111, 2476-2484.	1.4	167
34	Recipient Langerhans Cells Are Neither Required Nor Sufficient for GVHD Induction in MHC-Matched Allogeneic BMT, but a Langerin+ Cell Is a Pivotal Regulator of Langerhans Cell Turnover Post Transplantation. Blood, 2008, 112, 3511-3511.	1.4	0
35	Redundant Mechanisms for Dendritic Cell Activation in GVHD Induction: Signalings Via TLRs, TNF-α, IL-1 and CD40 Are Not Required. Blood, 2008, 112, 3509-3509.	1.4	0
36	Sirolimus-Containing Graft-Versus-Host Disease Prophylaxis and High- Resolution HLA Typing Improves the Outcome of Mismatched Unrelated Donor Allogeneic Hematopoietic Stem Cell Transplantation Blood, 2008, 112, 2216-2216.	1.4	0

#	Article	IF	CITATIONS
37	Transplantation's Greatest Challenges: Advances in Chronic Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2007, 13, 2-10.	2.0	68
38	Graft-versus-host disease. Nature Reviews Immunology, 2007, 7, 340-352.	22.7	680
39	Leukemia-Specific Antigens Alone Are Insufficient for GVL in MHC-Matched Allogeneic Stem Cell Transplantation: An Essential Role for Minor H Antigens Blood, 2006, 108, 187-187.	1.4	2
40	Mechanisms of GVL Against a Murine Blast Crisis CML Blood, 2006, 108, 191-191.	1.4	4
41	Distinct roles for donor- and host-derived antigen-presenting cells and costimulatory molecules in murine chronic graft-versus-host disease: requirements depend on target organ. Blood, 2005, 105, 2227-2234.	1.4	201
42	The Influence of Migration, Alloreactive Repertoire and Memory Subset on the Differential Ability of Naive and Memory T Cells To Induce GVHD Blood, 2005, 106, 577-577.	1.4	14
43	CD8+ but Not CD4+ T Cells Require Cognate Interactions with Target Tissues To Mediate GVHD across Only Minor H Antigens but CD4+ and CD8+ T Cells Both Require Direct Leukemic Contact for GVL Blood, 2005, 106, 580-580.	1.4	1
44	Donor APCs are required for maximal GVHD but not for GVL. Nature Medicine, 2004, 10, 987-992.	30.7	296
45	Distinct Roles for Donor and Host Antigen Presenting Cells and Costimulatory Molecules in Murine Chronic Graft-Vs-Host Disease: Requirements Depend on Target Organ Blood, 2004, 104, 3059-3059.	1.4	0
46	Spontaneous Memory CD4+ T Cells Preserve Graft-Versus-Leukemia without Causing Graft-Versus-Host Disease Blood, 2004, 104, 597-597.	1.4	0
47	Antigen presentation in graft-vs-host disease. Experimental Hematology, 2003, 31, 1187-1197.	0.4	55
48	Memory CD4+ T cells do not induce graft-versus-host disease. Journal of Clinical Investigation, 2003, 112, 101-108.	8.2	385
49	Hematopoietic Expression of Hoxb4 Is Regulated in Normal and Leukemic Stem Cells through Transcriptional Activation of the Hoxb4 Promoter by Upstream Stimulating Factor (Usf)-1 and Usf-2. Journal of Experimental Medicine, 2000, 192, 1479-1490.	8.5	44