Boris A Trofimov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2600523/publications.pdf Version: 2024-02-01

		66343	123424
1,122	11,559	42	61
papers	citations	h-index	g-index
1262	1262	1262	5601
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	C-Vinylpyrroles as Pyrrole Building Blocks. Chemical Reviews, 2004, 104, 2481-2506.	47.7	167
2	Organoelement chemistry: promising growth areas and challenges. Russian Chemical Reviews, 2018, 87, 393-507.	6.5	157
3	Acetylene and its Derivatives in Reactions with Nucleophiles: Recent Advances and Current Trends. Current Organic Chemistry, 2002, 6, 1121-1162.	1.6	150
4	Organofluorine chemistry: promising growth areas and challenges. Russian Chemical Reviews, 2019, 88, 425-569.	6.5	127
5	Ethynylation of pyrroles with 1-acyl-2-bromoacetylenes on alumina: a formal â€~inverse Sonogashira coupling'. Tetrahedron Letters, 2004, 45, 6513-6516.	1.4	102
6	Elemental phosphorus in strongly basic media as phosphorylating reagent: a dawn of halogen-free â€~green' organophosphorus chemistry. Mendeleev Communications, 2009, 19, 295-302.	1.6	92
7	New Hindered BODIPY Derivatives: Solution and Amorphous State Fluorescence Properties. Journal of Physical Chemistry C, 2009, 113, 11844-11855.	3.1	91
8	Nucleophilic addition of phosphine to aryl- and hetarylethenes a convenient synthesis of bis(2-arylalkyl)- and bis(2-hetaralkyl)phosphines. Tetrahedron Letters, 1994, 35, 7647-7650.	1.4	90
9	Understanding the Spectroscopic Properties and Aggregation Process of a New Emitting Boron Dipyrromethene (BODIPY). Journal of Physical Chemistry C, 2013, 117, 5373-5385.	3.1	89
10	Transition-Metal-Free Superbase-Promoted Stereoselective α-Vinylation of Ketones with Arylacetylenes: A General Strategy for Synthesis of β,γ-Unsaturated Ketones. Journal of Organic Chemistry, 2012, 77, 6880-6886.	3.2	88
11	Vibrations of the S–S bond in elemental sulfur and organic polysulfides: a structural guide. Journal of Sulfur Chemistry, 2009, 30, 518-554.	2.0	87
12	General Route to Symmetric and Asymmetric <i>meso</i> -CF ₃ -3(5)-Aryl(hetaryl)- and 3,5-Diaryl(dihetaryl)-BODIPY Dyes. Organic Letters, 2011, 13, 2524-2527.	4.6	80
13	Preparation of Pyrroles from Ketoximes and Acetylenes. Advances in Heterocyclic Chemistry, 1990, 51, 177-301.	1.7	78
14	Acetylenes in the Superbase-Promoted Assembly of Carbocycles and Heterocycles. Accounts of Chemical Research, 2018, 51, 1117-1130.	15.6	76
15	Novel general halogen-free methodology for the synthesis of organophosphorus compounds. Pure and Applied Chemistry, 2012, 84, 439-459.	1.9	73
16	Base atalyzed Stereoselective Vinylation of Ketones with Arylacetylenes: A New C(sp ³)C(sp ²) Bondâ€Forming Reaction. Chemistry - A European Journal, 2010, 16, 8516-8521.	3.3	71
17	Nucleophilic and free-radical additions of phosphines and phosphine chalcogenides to alkenes and alkynes. Arkivoc, 2006, 2006, 12-36.	0.5	70
18	Phosphine in the synthesis of organophosphorus compounds. Russian Chemical Reviews, 1999, 68, 215-227	6.5	69

#	Article	IF	CITATIONS
19	Carbon-carbon coupling constants - a new guide in the stereochemistry of oximes. Tetrahedron Letters, 1984, 25, 4817-4820.	1.4	66
20	Acetylene: new prospects of classical reactions. Russian Chemical Reviews, 2007, 76, 507-527.	6.5	65
21	Synthesis of nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds – Determination of their carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibition properties. Bioorganic Chemistry, 2020, 103, 104171.	4.1	64
22	Further Development of the Ketoxime-based Pyrrole Synthesis. Heterocycles, 1994, 37, 1193.	0.7	64
23	Chalcogenation in Multiphase Superbase Systems. Sulfur Reports, 1992, 11, 207-227.	0.4	62
24	Oximes as reagents. Russian Chemical Reviews, 2006, 75, 797-823.	6.5	61
25	A highly selective fluorescent sensor for fluoride anion based on pyrazole derivative: Naked eye "no–yes―detection. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 217, 29-34.	3.9	60
26	Reactions of Acetylene in Superbasic Media. Russian Chemical Reviews, 1981, 50, 138-150.	6.5	56
27	Synthesis of 2,5-bis(N,N-dialkylamino)thiophenes or 1-alkyl-2-N,N-dialkylamino-5-methylthiopyrroles from propargylic amines and isothiocyanates. Tetrahedron Letters, 1997, 38, 7241-7242.	1.4	53
28	Application of copper catalysis in a one-pot procedure for 1-alkyl-3-methoxy-2-methylthiopyrroles starting from methoxyallene and alkyl isothiocyanates. Tetrahedron Letters, 1998, 39, 2409-2410.	1.4	53
29	Elemental phosphorus–strong base as a system for the synthesis of organophosphorus compounds. Russian Chemical Reviews, 1991, 60, 1360-1367.	6.5	51
30	Reactions of acetylenes in superbasic media. Recent advances. Russian Chemical Reviews, 2014, 83, 600-619.	6.5	51
31	Divinyl Sulfide: Synthesis, Properties, and Applications. Sulfur Reports, 1984, 3, 323-393.	0.4	50
32	Tuning BODIPY molecular rotors into the red: sensitivity to viscosity vs. temperature. Journal of Materials Chemistry C, 2016, 4, 2828-2833.	5.5	48
33	Ultrasensitive reversible chromophore reaction of BODIPY functions as high ratio double turn on probe. Nature Communications, 2018, 9, 362.	12.8	48
34	Orange to black electrochromic behaviour in poly(2-(2-thienyl)-1H-pyrrole) thin films. Electrochimica Acta, 2007, 52, 4784-4791.	5.2	46
35	Synthesis and Optical Properties of 2â€{Benzo[<i>b</i>]thiopheneâ€3â€yl)pyrroles and a New BODIPY Fluorophore (BODIPY=4,4â€Difluoroâ€4â€boraâ€3 <i>a</i> ,4 <i>a</i> â€diazaâ€ <i>s</i> â€indacene). Chemistry - European Journal, 2009, 15, 5823-5830.	A3.3	46
36	CH···N and CH···O intramolecular hydrogen bonding effects in the ¹ H, ¹³ and ¹⁵ N NMR spectra of the configurational isomers of 1â€vinylpyrroleâ€2â€carbaldehyde oxime substantiated by DFT calculations. Magnetic Resonance in Chemistry, 2009, 47, 105-112.	C 1.9	46

#	Article	IF	CITATIONS
37	Synthesis of 2,3-dihydropyridines, cyclobutanopyrrolines and quinolines from lithiated allenes and isothiocyanates. Tetrahedron Letters, 1997, 38, 6905-6908.	1.4	45
38	Reactions of 2-phenylpyrrole with bromobenzoylacetylene on metal oxides active surfaces. Tetrahedron, 2008, 64, 5541-5544.	1.9	44
39	Oneâ€Pot Assembly of 7â€Methyleneâ€6,8â€dioxabicyclo[3.2.1]octanes, Congeners of Frontalin, from Ketones and Acetylene. European Journal of Organic Chemistry, 2009, 2009, 5142-5145.	2.4	44
40	A One-Pot Approach to Δ ² -lsoxazolines from Ketones and Arylacetylenes. Organic Letters, 2013, 15, 104-107.	4.6	44
41	2-Arylazo-1-vinylpyrroles: A Novel Promising Family of Reactive Dyes. European Journal of Organic Chemistry, 2006, 2006, 4021-4033.	2.4	43
42	Reaction of 3-(1-Hydroxycyclohexyl)-2-propynenitrile with Tris[2-(4-pyridyl)ethyl]phosphine Oxide. Synthesis, 2002, 2002, 853-855.	2.3	42
43	Influence of the Introduction of Short Alkyl Chains in Poly(2-(2-Thienyl)-1 <i>H</i> -pyrrole) on Its Electrochromic Behavior. Macromolecules, 2008, 41, 6886-6894.	4.8	42
44	Nanobiocomposites of noble metals based on arabinogalactan: Preparation and properties. Journal of Structural Chemistry, 2007, 48, 922-927.	1.0	41
45	Bactericidal action of Ag(0)-antithrombotic sulfated arabinogalactan nanocomposite: coevolution of initial nanocomposite and living microbial cell to a novel nonliving nanocomposite. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 827-833.	3.3	40
46	Intramolecular interactions inN-vinyl-2-arylpyrroles and -2-heteroarylpyrroles by1H and13C NMR. Magnetic Resonance in Chemistry, 1990, 28, 580-586.	1.9	39
47	Acetylene-based Functionalized Dihydrofuranones and Related Biomimetic Assemblies. Heterocycles, 1999, 51, 2485.	0.7	38
48	Reactions of unsaturated carbanions with isothiocyanates: A new avenue to fundamental heterocycles. Journal of Heterocyclic Chemistry, 1999, 36, 1469-1490.	2.6	38
49	A facile annelation of pyridines with nitriles of α,β-acetylenic γ-hydroxyacids. Tetrahedron Letters, 2002, 43, 1093-1096.	1.4	38
50	Nucleophilic additon of phosphine to 1-(tert-butyl)-4-vinylbenzene: a short-cut to bulky secondary and tertiary phosphines and their chalcogenides. Mendeleev Communications, 2008, 18, 260-261.	1.6	38
51	Synthesis of 2â€{Selenophenâ€2â€yl)pyrroles and Their Electropolymerization to Electrochromic Nanofilms. Chemistry - A European Journal, 2009, 15, 6435-6445.	3.3	38
52	Nucleophilic Addition of Ketones To Acetylenes and Allenes: AÂQuantum-Chemical Insight. Journal of Organic Chemistry, 2017, 82, 12467-12476.	3.2	37
53	Enediyne antibiotics and their models: new potential of acetylene chemistry. Russian Chemical Reviews, 2006, 75, 825-845.	6.5	36
54	Different types of hydrogen bonds in 2-substituted pyrroles and 1-vinyl pyrroles as monitored by1H,13C and15N NMR spectroscopy andab initio calculations. Magnetic Resonance in Chemistry, 2006, 44, 59-65.	1.9	36

#	Article	IF	CITATIONS
55	Expedient one-pot organometallics-free synthesis of tris(2-pyridyl)phosphine from 2-bromopyridine and elemental phosphorus. Tetrahedron Letters, 2012, 53, 2424-2427.	1.4	35
56	Nanocomposites with Magnetic, Optical, Catalytic, and Biologically Active Properties Based on Arabinogalactan. Doklady Chemistry, 2003, 393, 287-288.	0.9	34
57	A General Synthetic Strategy for the Design of New BODIPY Fluorophores Based on Pyrroles with Polycondensed Aromatic and Metallocene Substituents. Chemistry - A European Journal, 2011, 17, 3069-3073.	3.3	33
58	Redox reactions of arabinogalactan with silver ions and formation of nanocomposites. Russian Journal of General Chemistry, 2006, 76, 1111-1116.	0.8	32
59	C2â€Functionalization of 1â€Substituted Imidazoles with Aldehydes and Electronâ€Deficient Acetylenes: A Novel Three omponent Reaction. European Journal of Organic Chemistry, 2010, 2010, 1772-1777.	2.4	32
60	New Intermediates for Organic Synthesis based on Acetylene. Zeitschrift Für Chemie, 1986, 26, 41-49.	0.0	32
61	O-Vinyldiaryl- and O-vinylaryl(hetaryl)ketoximes: a breakthrough in O-vinyloxime chemistry. Tetrahedron, 2002, 58, 10043-10046.	1.9	31
62	Reactions of heterocumulenes with organometallic reagents: XVII. One-pot synthesis of alkoxy and (alkylsulfanyl)-substituted pyrroles and 2,3-dihydropyridines from aliphatic isothiocyanates and lithiated alkoxyallenes. Russian Journal of Organic Chemistry, 2011, 47, 659-677.	0.8	31
63	Transition Metalâ€Free Stereoselective αâ€Vinylation of Cyclic Ketones with Arylacetylenes in the Superbasic Catalytic Triad Potassium Hydroxide/ <i>tert</i> â€Butyl Alcohol/Dimethyl Sulfoxide. Advanced Synthesis and Catalysis, 2012, 354, 1813-1818.	4.3	31
64	Organophosphorus chemistry based on elemental phosphorus: advances and horizons. Russian Chemical Reviews, 2020, 89, 225-249.	6.5	31
65	One-Pot Syntheses of 2-N-Alkylamino-, 2-N-Phenylamino-, 2-N, N-Dialkylamino-, and 2-N-Alkyl-N-phenylaminothiophenes. European Journal of Organic Chemistry, 1998, 1998, 253-256.	2.4	30
66	Stereoselective <i>C</i> (2)-Vinylation of 1-Substituted Imidazoles with 3-Phenyl-2-propynenitrile. Journal of Organic Chemistry, 2008, 73, 9155-9157.	3.2	30
67	A Domino Reaction of α,β-Acetylenic γ-Hydroxy Nitriles with Arenecarboxylic Acids: An Unexpected Facile Shortcut to 4-Cyano-3(2 <i>H</i>)-furanones. Organic Letters, 2010, 12, 3200-3203.	4.6	30
68	Protected bis(hydroxyorganyl) polysulfides as modifiers of Li/S battery electrolyte. Electrochimica Acta, 2011, 56, 2458-2463.	5.2	30
69	Catalyst- and Solvent-Free Addition of the P–H Species to Alkenes and Alkynes: A Green Methodology for C–P Bond Formation. Synthesis, 2017, 49, 4783-4807.	2.3	30
70	Bipyrroles, furyl- and thienylpyrroles. Russian Chemical Reviews, 1999, 68, 459-482.	6.5	29
71	Unexpected formation of derivatives of cyclobutene and thiacyclobutane from the reaction between dilithiated benzylacetylene and isothiocyanates. Tetrahedron Letters, 2001, 42, 4687-4689.	1.4	29
72	Expedient synthesis of 1-vinylpyrrole-2-carbaldehydes. Tetrahedron Letters, 2006, 47, 3693-3696.	1.4	29

#	Article	IF	CITATIONS
73	Synthesis of pyrroles from aliphatic compounds. Russian Chemical Reviews, 1989, 58, 163-180.	6.5	28
74	Synthesis of 3-heteroalkyl-2-N-organylaminothiophenes. The first proof for amino-imino tautomerism of N-monosubstituted aminothiophenes. Tetrahedron Letters, 1998, 39, 2433-2436.	1.4	28
75	Title is missing!. Chemistry of Heterocyclic Compounds, 2000, 36, 1241-1260.	1.2	28
76	Synthesis and structure of bis(2-phenylethyl) phosphine selenide. Journal of Structural Chemistry, 2005, 46, 1066-1071.	1.0	28
77	Facile Self-Assembly Synthesis and Characterization of Diselenophosphinato Octanuclear CulClusters Inscribed in a Twelve-Vertex Selenium Polyhedron. European Journal of Inorganic Chemistry, 2012, 2012, 4921-4929.	2.0	28
78	Synthesis and Optical Properties of Difluoroboraâ€ <i>s</i> â€diazaindacene Dyes with Trifluoromethyl <i>mesoâ€</i> Substituents. European Journal of Organic Chemistry, 2013, 2013, 4107-4118.	2.4	28
79	Luminescent Cu ^I thiocyanate complexes based on tris(2-pyridyl)phosphine and its oxide: from mono-, di- and trinuclear species to coordination polymers. New Journal of Chemistry, 2016, 40, 10028-10040.	2.8	28
80	Synthesis ofC-vinylpyrroles. Russian Chemical Reviews, 2002, 71, 563-591.	6.5	27
81	Synthesis, Structure, and Spectral Properties of Bis(pyrrol-2-yl)pyridines. European Journal of Organic Chemistry, 2005, 2005, 4338-4345.	2.4	27
82	Catalyst- and Solvent-Free Rapid Addition of Secondary Phosphine Chalcogenides to Aldehydes: Another Click Chemistry. Synthesis, 2015, 47, 1611-1622.	2.3	27
83	Metal-free stereoselective annulation of quinolines with trifluoroacetylacetylenes and water: an access to fluorinated oxazinoquinolines. Chemical Communications, 2018, 54, 2268-2271.	4.1	27
84	Quantumâ€chemical models of KOH(KOBu ^t)/DMSO superbasic systems and mechanisms of baseâ€promoted acetylene reactions. International Journal of Quantum Chemistry, 2020, 120, e26158.	2.0	27
85	Cascade cyclization of quinoline and quinoxaline with nitriles of α,β-acetylenic γ-hydroxy acids. Mendeleev Communications, 2003, 13, 186-188.	1.6	26
86	Regio- and stereoselective annelation of phenanthridines with α,β-acetylenic γ-hydroxyacid nitriles. Tetrahedron, 2005, 61, 8031-8034.	1.9	26
87	Peroxidase-catalysed synthesis of electroconductive polypyrrole. Mendeleev Communications, 2008, 18, 56-58.	1.6	26
88	A one-pot synthesis of a branched tertiary phosphine oxide from red phosphorus and 1-(tert-butyl)-4-vinylbenzene in KOH–DMSO: an unusually facile addition of P-centered nucleophiles to a weakly electrophilic double bond. Tetrahedron Letters, 2008, 49, 3480-3483.	1.4	26
89	Silver-containing nanocomposites based on galactomannan and carrageenan: synthesis, structure, and antimicrobial properties. Russian Chemical Bulletin, 2010, 59, 2323-2328.	1.5	26
90	Synthesis of Functionalized 3,4â€Dihydropyrans via Rearrangement of the Products of a Oneâ€Pot Diastereoselective Assembly of Ketones and Acetylene. European Journal of Organic Chemistry, 2010, 2010, 6727-6730.	2.4	26

#	Article	IF	CITATIONS
91	C-Ethynylpyrroles: synthesis and reactivity. Russian Chemical Reviews, 2014, 83, 475-501.	6.5	26
92	Direct synthesis of butadiynyl-substituted pyrroles under solvent- and transition metal-free conditions. RSC Advances, 2015, 5, 73241-73248.	3.6	26
93	Chiroplasmonic magnetic gold nanocomposites produced by one-step aqueous method using κ-carrageenan. Carbohydrate Polymers, 2017, 175, 18-26.	10.2	26
94	Transitionâ€Metalâ€Free Addition of Acetylenes to Ketimines: the First Base atalyzed Ethynylation of the C=N Bond. European Journal of Organic Chemistry, 2018, 2018, 4845-4849.	2.4	26
95	New Reactions and Chemicals Based on Sulfur and Acetylene. Sulfur Reports, 1983, 3, 83-114.	0.4	25
96	Configurational and conformational analysis ofO-vinyl ketoximes by1H and13C NMR spectroscopy. Magnetic Resonance in Chemistry, 2000, 38, 994-1000.	1.9	25
97	Synthesis and Thermal Stability of O-Vinylketoximes. Synthesis, 2000, 2000, 1125-1132.	2.3	25
98	N-Isopropenylazoles: I. Direct N-Isopropenylation of Azoles with Propyne and Allene. Russian Journal of Organic Chemistry, 2003, 39, 408-414.	0.8	25
99	Sulfurization of Polymers: A Novel Access to Electroactive and Conducting Materials. Sulfur Reports, 2003, 24, 283-305.	0.4	25
100	Reaction of anabasine with 3-(1-hydroxycyclohexyl)-2-propynenitrile: a new route to functionalised anabasine alkaloids. Mendeleev Communications, 2005, 15, 33-35.	1.6	25
101	Ethynylation of indoles with 1-benzoyl-2-bromoacetylene on Al2O3. Tetrahedron Letters, 2006, 47, 7139-7141.	1.4	25
102	Bifurcated hydrogen-bonding effect on the shielding and coupling constants in trifluoroacetyl pyrroles as studied by1H,13C and15N NMR spectroscopy and DFT calculations. Magnetic Resonance in Chemistry, 2007, 45, 220-230.	1.9	25
103	Preconcentration of gold, silver, palladium, platinum, and ruthenium with organophosphorus extractants. Russian Journal of Applied Chemistry, 2009, 82, 183-189.	0.5	25
104	Superbaseâ€Promoted Selective Cascade Cyclization Reaction of 1,5â€Diketones with Acetylenes to Methyleneâ€6,8â€dioxabicyclo[3.2.1]octanes. European Journal of Organic Chemistry, 2013, 2013, 2453-2460.	2.4	25
105	Base-Catalyzed Domino Cyclization of Acetylenes with Ketones to Functionalized Cyclopentenes. Organic Letters, 2014, 16, 4040-4043.	4.6	25
106	3H-Pyrroles from ketoximes and acetylene: synthesis, stability and quantum-chemical insight. Tetrahedron, 2015, 71, 3273-3281.	1.9	25
107	Metal-free site selective cross-coupling of pyridines with secondary phosphine chalcogenides using acylacetylenes as oxidants. Chemical Communications, 2018, 54, 3371-3374.	4.1	25
108	Diastereoselective synthesis of CF ₃ -oxazinoquinolines in water. Green Chemistry, 2019, 21, 6353-6360.	9.0	25

#	Article	IF	CITATIONS
109	Polymerisation of N-Vinylpyrroles. Russian Chemical Reviews, 1985, 54, 609-618.	6.5	24
110	Chemo-, regio- and stereospecific addition of amino acids to acylacetylenes: a facile synthesis of new N-acylvinyl derivatives of amino acids. Tetrahedron, 2009, 65, 9814-9818.	1.9	24
111	Stereoselective free-radical addition of secondary phosphine selenides to aromatic acetylenes. Journal of Organometallic Chemistry, 2009, 694, 677-682.	1.8	24
112	A one-pot synthesis and mild cleavage of 2-[2- or 5-(alkylsulfanyl)pyrrol-1-yl]ethyl vinyl ethers by t-BuOK/DMSO: a novel and facile approach to N-vinylpyrroles. Tetrahedron Letters, 2010, 51, 5316-5318.	1.4	24
113	Expedient one-pot synthesis of pyrroles from ketones, hydroxylamine, and 1,2-dichloroethane. Tetrahedron, 2015, 71, 124-128.	1.9	24
114	Transition-Metal Free Mechanochemical Approach to Polyyne Substituted Pyrroles. Journal of Organic Chemistry, 2016, 81, 9188-9198.	3.2	24
115	SUPERBASE-INDUCED GENERATION OF PHOSPHIDE AND PHOSPHINITE IONS AS APPLIED IN ORGANIC SYNTHESIS. Phosphorus, Sulfur and Silicon and the Related Elements, 1991, 55, 271-274.	1.6	23
116	Title is missing!. Russian Chemical Bulletin, 2002, 51, 774-782.	1.5	23
117	Ethynedithiolâ€based polyeneoligosulfides as active cathode materials for lithiumâ€sulfur batteries. Journal of Applied Polymer Science, 2008, 107, 784-787.	2.6	23
118	Facile [2+2] Cycloaddition of DDQ to an Alkyne: Synthesis of Pyrrolyl- and Indolylbicyclo[4.2.0]octadienes from C-Ethynylpyrroles or C-Ethynylindoles. Synthesis, 2010, 2010, 470-476.	2.3	23
119	The reaction of red phosphorus with 1â€bromonaphthalene in the KOH–DMSO system: Synthesis of tri(1â€naphthyl)phosphane. Heteroatom Chemistry, 2011, 22, 198-203.	0.7	23
120	A convenient synthesis of hetarylethynyl ketones from hetarylcarbaldehydes and acetylene. Chemistry of Heterocyclic Compounds, 2013, 49, 341-344.	1.2	23
121	Improved synthesis of tertiary propargyl alcohols by the Favorskii reaction of alkyl aryl (hetaryl) ketones with acetylene. Russian Journal of Organic Chemistry, 2013, 49, 8-11.	0.8	23
122	From 4,5,6,7-tetrahydroindoles to 3- or 5-(4,5,6,7-tetrahydroindol-2-yl)isoxazoles in two steps: a regioselective switch between 3- and 5-isomers. Tetrahedron, 2014, 70, 5168-5174.	1.9	23
123	Synthesis of Acyl Terphenyls and Higher Polyaromatics via Base-Promoted C–H Functionalization of Acetylarenes with Arylacetylenes. Organic Letters, 2016, 18, 2158-2161.	4.6	23
124	Cleavage of PP Bonds in Phosphorus. An Efficient Method for the Preparation of Primary Alkylphosphines. Mendeleev Communications, 1995, 5, 14-15.	1.6	22
125	Vinyl ethers with polysulfide and hydroxyl functions and polymers therefrom as binders for lithium–sulfur batteries. Journal of Applied Polymer Science, 2006, 101, 4051-4055.	2.6	22
126	Chemo- and regioselective ethynylation of 4,5,6,7-tetrahydroindoles with ethyl 3-halo-2-propynoates. Tetrahedron Letters, 2008, 49, 3946-3949.	1.4	22

#	Article	IF	CITATIONS
127	Synthesis of new secondary phosphine chalcogenides with bulky substituents from aryl(hetaryl)ethenes, red phosphorus, sulfur, and selenium. Russian Journal of General Chemistry, 2009, 79, 1617-1621.	0.8	22
128	Reactions of Lithiated Alkynes and Allenes with Isothiocyanates: A Simple and Efficient Synthesis of New Aryl- or Hetaryl-Substituted 3H-Azepines and 4,5-Dihydro-3H-azepines. Synthesis, 2011, 2011, 2192-2204.	2.3	22
129	Exploring acetylene chemistry in superbasic media: A theoretical study of the effect of water on vinylation and ethynylation reactions with acetylene in KOH/DMSO and NaOH/DMSO systems. Journal of Physical Organic Chemistry, 2017, 30, e3669.	1.9	22
130	Recent Strides in the Transition Metal-Free Cross-Coupling of Haloacetylenes with Electron-Rich Heterocycles in Solid Media. Molecules, 2020, 25, 2490.	3.8	22
131	Pyrrole-2-dithiocarboxylates: Synthesis of 2-(1-Alkylthio-2-cyanoethenyl)pyrroles. Tetrahedron, 1995, 51, 4223-4230.	1.9	21
132	Tris(2-pyridyl)phosphine: a straightforward microwave-assisted synthesis from 2-bromopyridine and red phosphorus and coordination with cobalt(ii) dichloride. Mendeleev Communications, 2012, 22, 187-188.	1.6	21
133	[1,7]-Electrocyclization reactions in the synthesis of azepine derivatives. Chemistry of Heterocyclic Compounds, 2013, 49, 152-176.	1.2	21
134	Alkynylation of Aldehydes and Ketones Using the Bu ₄ NOH/H ₂ O/DMSO Catalytic Composition: A Wide‣cope Methodology. European Journal of Organic Chemistry, 2014, 2014, 4663-4670.	2.4	21
135	Synthesis of 1-alkyl-5,6-bis(alkylthio)-1,2-dihydropyridines and their thermally induced conversion into 1-alkyl-3-alkylthio-2H-pyridine-2-thiones. Tetrahedron Letters, 1998, 39, 1995-1996.	1.4	20
136	CHEMO- AND STEREOSELECTIVE ADDITION OF DIORGANYLPHOSPHINE OXIDES TO $\hat{1}_{\pm}$, $\hat{1}^{2}$ -ETHYLENIC ALDEHYDES. Phosphorus, Sulfur and Silicon and the Related Elements, 2004, 179, 7-18.	1.6	20
137	Synthesis of 3- and 5-amino-5-(3)-(pyrrol-2-yl)isoxazoles. Tetrahedron, 2005, 61, 4841-4849.	1.9	20
138	Nucleophilic Addition to Acetylenes in Superbasic Catalytic Systems: XIII. Fluoride Cesium Containing Systems, Efficient Catalysts for Alkanols Vinylation. Russian Journal of Organic Chemistry, 2005, 41, 656-660.	0.8	20
139	Triphenylphosphine as an effective catalyst for ketoximes addition to acylacetylenes: regio- and stereospecific synthesis of (E)-(O)-2-(acyl)vinylketoximes. Tetrahedron, 2010, 66, 7527-7532.	1.9	20
140	A novel simple synthesis of bis(diorganoselenophosphoryl)selenides (R2PSe)2Se from secondary phosphines and elemental selenium. Tetrahedron Letters, 2010, 51, 2141-2143.	1.4	20
141	Diselenophosphinates. Synthesis and Applications. Organic Preparations and Procedures International, 2011, 43, 381-449.	1.3	20
142	Methanol vinylation mechanism in the KOH/DMSO/CH ₃ OH/C ₂ H ₂ system. International Journal of Quantum Chemistry, 2011, 111, 2519-2524.	2.0	20
143	Propargylation of arabinogalactan with propargyl halides—a facile route to new functionalized biopolymers. Carbohydrate Research, 2013, 376, 7-14.	2.3	20
144	A One-Pot Synthesis of 2-Aminopyrimidines from Ketones, Arylacetylenes, and Guanidine. Journal of Organic Chemistry, 2017, 82, 119-125.	3.2	20

#	Article	IF	CITATIONS
145	Environmentâ€Responsive 8 F ₃ â€BODIPY Dyes with Aniline Groups at the 3 Position: Synthesis, Optical Properties and Rl C2 Calculations. Asian Journal of Organic Chemistry, 2017, 6, 852-861.	2.7	20
146	Transition metal-free one-pot double C–H functionalization of quinolines with disubstituted electron-deficient acetylenes. Chemical Communications, 2018, 54, 5863-5866.	4.1	20
147	Synthesis, Characterization, Molecular Docking, Acetylcholinesterase and αâ€Clycosidase Inhibition Profiles of Nitrogenâ€Based Novel Heterocyclic Compounds. ChemistrySelect, 2022, 7, .	1.5	20
148	Efficient Preparative-Scale Procedures for the Pd-Catalyzed Methoxycarbonylation of Acetylenes. Synthetic Communications, 1994, 24, 85-88.	2.1	19
149	Regioselective addition of secondary phosphine oxides to 3-(trialkylsilyl)- and 3-(trialkylgermyl)-2-propynals. Journal of Organometallic Chemistry, 2002, 659, 172-175.	1.8	19
150	From 1,4-diketones to N-vinyl derivatives of 3,3′-bipyrroles and 4,8-dihydropyrrolo[2,3-f]indole in just two preparative steps. Tetrahedron Letters, 2004, 45, 3789-3791.	1.4	19
151	One-Pot Reaction of Secondary Phosphine Selenides with Selenium and Nitrogen Bases: A Novel Synthesis of Diorganodiselenophosphinates. Synthesis, 2009, 2009, 3332-3338.	2.3	19
152	Expedient one-step synthesis of nitrogen stilbene analogs by transition metal-free hydroamination of arylacetylenes with pyrroles. Tetrahedron, 2012, 68, 1963-1971.	1.9	19
153	One-pot reductive N-vinylation and C(4)-phosphorylation of pyridines with alkyl propiolates and secondary phosphine chalcogenides. Tetrahedron Letters, 2015, 56, 4804-4806.	1.4	19
154	Complex effects of selenium-arabinogalactan nanocomposite on both phytopathogen Clavibacter michiganensis subsp. sepedonicus and potato plants. Nanotechnologies in Russia, 2015, 10, 484-491.	0.7	19
155	Synthesis and Optical Properties of <i>meso</i> F ₃ â€BODIPY with Acylethynyl Substituents in the 3â€Position of the Indacene Core. Asian Journal of Organic Chemistry, 2016, 5, 1288-1294.	2.7	19
156	A One-Pot Assembly of Fully Substituted Alkyl 5-Aminothiophene-2-carboxylates from Allenes, Isothiocyanates, and Alkyl 2-Bromoacetates. Journal of Organic Chemistry, 2017, 82, 7519-7528.	3.2	19
157	Superbaseâ€Promoted Addition of Acetylene Gas to the C=N Bond. European Journal of Organic Chemistry, 2019, 2019, 5875-5881.	2.4	19
158	Facile One-Pot Syntheses of 1-Allenylpyrroles. Synthesis, 1993, 1993, 571-572.	2.3	18
159	α,β-Unsaturated Isothiocyanates. Sulfur Reports, 1996, 17, 183-385.	0.4	18
160	Addition of secondary phosphines to N-vinylpyrroles. Tetrahedron Letters, 2003, 44, 2629-2632.	1.4	18
161	Annelation of Benzimidazoles with α,β-Acetylenic γ-Hydroxyacid Nitriles and Hydrolytic Rearrangement of the Cycloadducts on Alumina. European Journal of Organic Chemistry, 2007, 2007, 1018-1025.	2.4	18
162	Conformational study of 2-arylazo-1-vinylpyrroles. Magnetic Resonance in Chemistry, 2007, 45, 142-151.	1.9	18

#	Article	IF	CITATIONS
163	Silver-poly(1-vinyl-1,2,4-triazole) nanocomposites. Doklady Chemistry, 2008, 420, 123-124.	0.9	18
164	Reaction of secondary phosphine selenides with the system Se/MOH (M=Li, Na, K, Rb, Cs): A novel three-component synthesis of diorganodiselenophosphinates. Journal of Organometallic Chemistry, 2009, 694, 4116-4120.	1.8	18
165	Oneâ€Pot Atomâ€Economic Synthesis of Thioselenophosphinates via a New Multicomponent Reaction of Secondary Phosphanes with Elemental Sulfur, Selenium, and Amines. European Journal of Organic Chemistry, 2010, 2010, 6157-6160.	2.4	18
166	Synthesis of secondary propargyl alcohols from aromatic and heteroaromatic aldehydes and acetylene in the system KOH-H2O-DMSO. Russian Journal of Organic Chemistry, 2013, 49, 356-359.	0.8	18
167	Furans Conjugated with Bulky Aromatic Systems: Oneâ€Pot Synthesis from Ketones and Acetylene. Chemistry - A European Journal, 2015, 21, 15944-15946.	3.3	18
168	Cross-linking method using pentaepoxide for improving bovine and porcine bioprosthetic pericardia: A multiparametric assessment study. Materials Science and Engineering C, 2021, 118, 111473.	7.3	18
169	Sulfur-Containing Pyrroles. Phosphorus, Sulfur and Silicon and the Related Elements, 1994, 95, 145-163.	1.6	17
170	The base-catalysed rearrangement of O-propargyl ketoximes to N-1-alkenyl acryl amides. Tetrahedron Letters, 1995, 36, 9181-9184.	1.4	17
171	Synthesis of organic phosphines and phosphine oxides from elemental phosphorus and phosphine in the presence of strong bases. Russian Chemical Bulletin, 1998, 47, 1645-1652.	1.5	17
172	Synthesis of derivatives of 2-imino-5,6-dihydro-2H-thiopyran from 1-heteroalkyl-1,3-butadienes and isothiocyanates. Tetrahedron Letters, 1998, 39, 2631-2634.	1.4	17
173	A Versatile Synthetic Method for Preparing 1,2,3,5-Tetrasubstituted Pyrroles Using Isothiocyanates and 2-Alkynyl Ethers or 2-Alkynylamines as Building Units. European Journal of Organic Chemistry, 1999, 1999, 2663-2664.	2.4	17
174	Facile Nonâ€Catalyzed Synthesis of Tertiary Phosphine Sulfides by Regioselective Addition of Secondary Phosphine Sulfides to Alkenes. European Journal of Organic Chemistry, 2014, 2014, 2516-2521.	2.4	17
175	Decorated Cyclopentadienes from Acetylene and Ketones in Just Two Steps. Organic Letters, 2017, 19, 3127-3130.	4.6	17
176	Catalyst-free 1 : 2 annulation of quinolines with trifluoroacetylacetylenes: an access to functionalized oxazinoquinolines. Organic and Biomolecular Chemistry, 2018, 16, 8038-8041.	2.8	17
177	Reaction of Pyrrole Anions with Carbon Disulfide. Synthesis of Pyrrole-3-carbodithioates. Tetrahedron, 2000, 56, 7325-7329.	1.9	16
178	Activation of white phosphorus in the coordination sphere of nickel complexes with σ-donor ligands. Russian Chemical Bulletin, 2005, 54, 942-947.	1.5	16
179	Base Catalyzed Double Addition of Secondary Phosphine Chalcogenides to Benzoylacetylene. Letters in Organic Chemistry, 2007, 4, 109-111.	0.5	16
180	Stereochemical Study of 2-Substituted N-Vinylpyrroles. Australian Journal of Chemistry, 2007, 60, 583.	0.9	16

#	Article	IF	CITATIONS
181	Free-radical addition of phosphine sulfides to aryl and hetaryl acetylenes: unprecedented stereoselectivity. Mendeleev Communications, 2007, 17, 181-182.	1.6	16
182	A new approach to densely functionalised azepines and dihydroazepines. Mendeleev Communications, 2008, 18, 164-166.	1.6	16
183	An Efficient Route to 1-Vinylpyrrole-2-carbaldehydes. Synthesis, 2009, 2009, 587-590.	2.3	16
184	One-pot assembly of 4-methylene-3-oxa-1-azabicyclo[3.1.0]hexanes from alkyl aryl(hetaryl) ketoximes, acetylene, and aliphatic ketones: a new three-component reaction. Tetrahedron Letters, 2009, 50, 3314-3317.	1.4	16
185	Synthesis and structural characterization of novel zinc(II) and cadmium(II) complexes with pyridine-phosphine chalcogenide ligands. Journal of Organometallic Chemistry, 2011, 696, 2053-2058.	1.8	16
186	C(2)-Functionalization of 1-substituted imidazoles with cyanoacetylenes and aromatic or heteroaromatic aldehydes. Tetrahedron, 2011, 67, 1288-1293.	1.9	16
187	New methodology for functionalization of the imidazole ring by alkynes. Chemistry of Heterocyclic Compounds, 2012, 48, 147-154.	1.2	16
188	A peculiar transition-metal-free cyclodimerization of propargylic alcohols to vinyl bicyclic ketals. Tetrahedron, 2012, 68, 1241-1246.	1.9	16
189	Highly efficient atom economical "green chemistry―synthesis of vinyl sulfides from thiols and acetylene in water. Russian Chemical Bulletin, 2013, 62, 438-440.	1.5	16
190	Three-component reaction of imidazoles, cyanophenylacetylene, and chalcogens: stereoselective synthesis of 3-alkenyl-2-imidazolethiones and -selones. Tetrahedron, 2014, 70, 1091-1098.	1.9	16
191	Nanocomposites of silver with arabinogalactan sulfate: Preparation, structure, and antimicrobial activity. Russian Journal of General Chemistry, 2015, 85, 477-484.	0.8	16
192	Organic Superbases in Annulation with Propargylic Alcohols: Straightforward Synthesis of the Functionalized Oxazolopyrrolohexahydropyrimidine and Oxazolohexahydropyrimidoazepine Scaffolds. European Journal of Organic Chemistry, 2016, 2016, 5465-5469.	2.4	16
193	Reaction of elemental phosphorus with α-methylstyrenes: one-pot synthesis of secondary and tertiary phosphines, prospective bulky ligands for Pd(II) catalysts. Tetrahedron, 2016, 72, 443-450.	1.9	16
194	Metal-free C–H functionalization of 2H-imidazole 1-oxides with pyrrolyl fragments in the design of novel azaheterocyclic ensembles. Organic and Biomolecular Chemistry, 2017, 15, 8280-8284.	2.8	16
195	PCl 3 - and organometallic-free synthesis of tris(2-picolyl)phosphine oxide from elemental phosphorus and 2-(chloromethyl)pyridine hydrochloride. Tetrahedron Letters, 2018, 59, 723-726.	1.4	16
196	Catalyst-Free Phosphorylation of Acridine with Secondary Phosphine Chalcogenides: Nucleophilic Addition vs S _N ^H Ar Reaction. Organic Letters, 2018, 20, 7388-7391.	4.6	16
197	Acetylene-Triggered Reductive Incorporation of Phosphine Chalcogenides into a Quinoline Scaffold: Toward S _N ^H Ar Reaction. Journal of Organic Chemistry, 2019, 84, 6244-6257.	3.2	16
198	Transition-Metal-Free Superbase-Catalyzed C–H Vinylation of Aldimines with Acetylenes to 1-Azadienes. Journal of Organic Chemistry, 2020, 85, 3417-3425.	3.2	16

#	Article	IF	CITATIONS
199	Rotational Isomerism of Vinyl Ethers and Sulfides. Sulfur Reports, 1987, 7, 337-375.	0.4	15
200	Divinyl Sulfoxide: Synthesis, Properties, and Applications. Sulfur Reports, 1989, 9, 95-141.	0.4	15
201	Prospects for the chemistry of pyrrole. Russian Chemical Reviews, 1989, 58, 967-976.	6.5	15
202	2-(2-Benzoylethynyl)-5-phenylpyrrole: fixation of cis- and trans-rotamers in a crystal state. Mendeleev Communications, 2005, 15, 229-232.	1.6	15
203	Synthesis and electrochemical study of narrow band gap conducting polymers based on 2,2′-dipyrroles linked with conjugated aza-spacers. Synthetic Metals, 2007, 157, 60-65.	3.9	15
204	Stereochemical study of iminodihydrofurans based on experimental measurements and SOPPA calculations of ¹³ C ¹³ C spin–spin coupling constants. Magnetic Resonance in Chemistry, 2007, 45, 758-765.	1.9	15
205	Expedient synthesis of pyrazoles substituted with amino, hydroxyl and thioamide groups. Tetrahedron Letters, 2008, 49, 3104-3107.	1.4	15
206	Diselenophosphinates of lupinine or anabasine via a new three-component reaction of secondary phosphines, elemental selenium, and amines. Tetrahedron Letters, 2010, 51, 1840-1843.	1.4	15
207	15-[(Z)-Phenylmethylidene]-7,14-dioxadispiro[5.1.5.2]pentadecanes: stereoselective one-pot assembly from cyclohexanones and phenylacetylene in a KOH/DMSO suspension. Tetrahedron Letters, 2011, 52, 3772-3775.	1.4	15
208	Unexpected diastereoselective one-pot assembly of hexahydroazulenones from 2-alkylcyclohexanones and arylacetylenes in KOH/DMSO suspension. Tetrahedron Letters, 2011, 52, 4285-4287.	1.4	15
209	Stereoselective Metal-Free Reaction of Imidazoles with Isothiocyanates Involving Cyanophenylacetylene: A Shortcut to N-(Z-Alkenyl)imidazole-2-carbothioamides. Synlett, 2012, 23, 2069-2072.	1.8	15
210	Stereoselective Tandem Ring Opening of Imidazoles with Electron-Deficient Acetylenes and Water: Synthesis of Functionalized (Z,Z)-1,4-Diaza-2,5-dienes. Organic Letters, 2013, 15, 2322-2324.	4.6	15
211	Topochemical mechanoactivated phosphonylethynylation of pyrroles with chloroethynylphosphonates on solid Al2O3 or K2CO3 media. Tetrahedron Letters, 2015, 56, 4657-4660.	1.4	15
212	Metal-polymer nanobiocomposites with galactose-containing stabilizing matrices: Dimensional effect in changes of molar mass parameters. Russian Journal of General Chemistry, 2015, 85, 488-496.	0.8	15
213	N -Vinyl-2-(trifluoroacetylethynyl)pyrroles and E -2-(1-bromo-2-trifluoroacetylethenyl)pyrroles: Cross-coupling vs. addition during C H-functionalization of pyrroles with bromotrifluoroacetylacetylene in solid Al 2 O 3 medium. H-bonding control. Journal of Fluorine Chemistry. 2016, 186, 1-6.	1.7	15
214	Ring-opening of pyridines and imidazoles with electron-deficient acetylenes: En route to metal-free organic synthesis. Mendeleev Communications, 2017, 27, 109-115.	1.6	15
215	Toward accessible 3H-pyrroles. Arkivoc, 2016, 2016, 161-171.	0.5	15
216	Efficient One-Pot Procedures for the Preparation of Secondary Phosphines. Synthetic Communications, 1994, 24, 3219-3223.	2.1	14

#	Article	IF	CITATIONS
217	Non-catalytic Addition of 1,2,4-Triazole to Nucleophilic and Electrophilic Alkenes. Chemistry of Heterocyclic Compounds, 2002, 38, 981-985.	1.2	14
218	Chemo- and Regiospecific Monoaddition of Secondary Phosphine Sulfides to 1-Acyl-2-phenylacetylenes. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 1396-1401.	1.6	14
219	Rearrangements of the [2+2]-cycloadducts of DDQ and 2-ethynylpyrroles. Tetrahedron Letters, 2010, 51, 5028-5031.	1.4	14
220	<i>N</i> -Vinyl Ferrocenophane Pyrrole: Synthesis and Physical and Chemical Properties. Organometallics, 2011, 30, 6476-6481.	2.3	14
221	Formation kinetics of gold nanoparticles in the galactomannan polysaccharide matrix. Doklady Chemistry, 2011, 440, 282-285.	0.9	14
222	A Theoretical and Experimental Study of NMR Contrasting Properties of Nanocomposites Based on Ferric Oxides Stabilized by Arabinogalactan Matrix. Applied Magnetic Resonance, 2011, 41, 525-536.	1.2	14
223	Dinuclear gold(<scp>i</scp>) dithio- and diselenophosph(in)ate complexes forming mononuclear gold(<scp>iii</scp>) oxidative addition complexes and reversible chemical reductive elimination products. Dalton Transactions, 2014, 43, 663-670.	3.3	14
224	Effect of selenium and arabinogalactan nanocomposite on viability of the phytopathogen Clavibacter michiganensis subsp. sepedonicus. Doklady Biological Sciences, 2015, 461, 89-91.	0.6	14
225	Nanobiocomposite based on selenium and arabinogalactan: Synthesis, structure, and application. Russian Journal of General Chemistry, 2015, 85, 485-487.	0.8	14
226	Catalyst- and Solvent-Free Stereoselective Addition of Secondary Phosphine Chalcogenides to Alkynes. Synthesis, 2015, 47, 263-271.	2.3	14
227	One-pot regio- and stereoselective synthesis of tertiary phosphine chalcogenides with (E)-N-ethenyl-1,2-dihydroquinoline functionalities. Tetrahedron Letters, 2016, 57, 3776-3780.	1.4	14
228	Synthesis of 5-hydroxy-Δ1-pyrrolines from aryl isoalkyl ketoximes and acetylene in a tuned superbase medium. Tetrahedron Letters, 2016, 57, 3156-3159.	1.4	14
229	KOBu ^t /DMSO-Mediated α-C–H Vinylation of <i>N</i> Benzyl Ketimines with Acetylene Gas: Stereoselective Synthesis of (<i>E</i> , <i>Z</i>)-2-Azadienes. Organic Letters, 2020, 22, 2611-2614.	4.6	14
230	Phosphorus-Containing Heterocyclic Compounds Derived from N-Vinylpyrroles. Heteroatom Chemistry, 1997, 8, 495-499.	0.7	13
231	Addition of secondary phosphines to phenylcyanoacetylene as a route to functional phosphines. Mendeleev Communications, 1999, 9, 163-164.	1.6	13
232	Synthesis of 3-hydroxy-1-methyl-2-(methylthio) pyrrole from methyl isothiocyanate and prop-2-yn-1-ol. Russian Chemical Bulletin, 2000, 49, 1634-1636.	1.5	13
233	TRIS[(5-CHLORO-2-THIENYL)METHYL] PHOSPHINE OXIDE FROM ELEMENTAL PHOSPHORUS AND 2-CHLORO-5-(CHLOROMETHYL) THIOPHENE. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 175, 163-167.	1.6	13
234	Strong intramolecular hydrogen bond N—HO in 2-(2-acyl-1-phenylethenyl)-5-phenylpyrroles. Russian Chemical Bulletin, 2002, 51, 111-116.	1.5	13

Boris A Trofimov

#	Article	IF	CITATIONS
235	Title is missing!. Russian Chemical Bulletin, 2002, 51, 1709-1714.	1.5	13
236	Synthesis of 2-benzoylethynylpyrroles by cross coupling of 2-arylpyrroles with 1-benzoyl-2-bromoacetylene over aluminum oxide. Russian Journal of Organic Chemistry, 2006, 42, 1348-1355.	0.8	13
237	Pd(0)-arabinogalactan nanocomposites as catalysts for dimerization of acetylenic compounds. Doklady Chemistry, 2007, 417, 261-263.	0.9	13
238	A short-cut from 1-acetyl adamantane to 2-(1-adamantyl)pyrroles. Tetrahedron Letters, 2008, 49, 4362-4365.	1.4	13
239	A theoretical study of methanol vinylation reaction mechanism. International Journal of Quantum Chemistry, 2008, 108, 2630-2635.	2.0	13
240	Cross-coupling of 4,5,6,7-tetrahydroindole with functionalized haloacetylenes on active surfaces of metal oxides and salts. Russian Journal of Organic Chemistry, 2010, 46, 1373-1377.	0.8	13
241	Magnetic activity of nanostructured biopolymeric nanomagnets. Russian Chemical Bulletin, 2010, 59, 2318-2322.	1.5	13
242	Gold nanoparticles stabilized with water-soluble biocompatible poly(1-vinyl-1,2,4-triazole). Doklady Chemistry, 2010, 431, 63-64.	0.9	13
243	Simultaneous synthesis of 4,5-dihydro-3H-azepines and 3H-azepines, bearing alkoxy and alkylsulfanyl substituents, through metallation of 2-aza-1,3,5-trienes by t-BuOK. Journal of Organometallic Chemistry, 2011, 696, 3359-3368.	1.8	13
244	A three-component reaction between alkenes, secondary phosphanes, and elemental selenium: a novel, efficient, atom-economic synthesis of diselenophosphinic esters. Tetrahedron Letters, 2011, 52, 6985-6987.	1.4	13
245	A simple one-pot synthesis of phosphinoselenoic amides and diamides from secondary phosphine selenides and amines using Et3N-CCl4. Tetrahedron Letters, 2011, 52, 2367-2369.	1.4	13
246	Colloidal Aggregates of Pd Nanoparticles Supported by Larch Arabinogalactan. Journal of Physical Chemistry B, 2013, 117, 2134-2141.	2.6	13
247	Catalyst-Free and Solvent-Free Addition of P(Se)–H Species to Alkenes: A Straightforward Access to Tertiary Phosphine Selenides. Synthesis, 2014, 46, 2656-2662.	2.3	13
248	Ethynylation of 2-(furan-2-yl)- and 2-(thiophen-2-yl)pyrroles with acylbromoacetylenes in the Al2O3 medium: relative reactivity of heterocycles. Tetrahedron, 2014, 70, 9506-9511.	1.9	13
249	Structural reorganization of (allyl-, benzyl-, and propargylsulfanyl)-substituted 2-aza-1,3,5-trienes in t-BuOK/THF/DMSO: access to rare functionalized 2-thiazolines. Tetrahedron Letters, 2014, 55, 2495-2498.	1.4	13
250	Tuneable superbase-catalyzed vinylation of α-hydroxyalkylferrocenes with alkynes. Tetrahedron, 2014, 70, 5954-5960.	1.9	13
251	Unexpected N,N'-coordination of tris(2-pyridyl)-phosphine chalcogenides to PdCl2. Mendeleev Communications, 2015, 25, 196-198.	1.6	13
252	Synthesis of 5-hydroxy-î"1-pyrrolines from sec-alkyl aryl ketoximes and acetylene. Tetrahedron, 2016, 72, 6661-6667.	1.9	13

#	Article	IF	CITATIONS
253	Unexpected acid-catalyzed ferrocenylmethylation of diverse nucleophiles with vinyloxymethylferrocene. Tetrahedron, 2016, 72, 4414-4422.	1.9	13
254	Transition-Metal-Free, Atom- and Step-Economic Synthesis of Aminoketopyrrolizines from Benzylamine, Acylethynylpyrroles, and Acylacetylenes. Organic Letters, 2017, 19, 1586-1589.	4.6	13
255	Transition-Metal-Free Synthesis of Pyrrolo[1,2-a]pyrazines via Intramolecular Cyclization of N-Propargyl(pyrrolyl)enaminones. Synthesis, 2017, 49, 4065-4081.	2.3	13
256	Application of Acyzol in the Context of Zinc Deficiency and Perspectives. International Journal of Molecular Sciences, 2019, 20, 2104.	4.1	13
257	Zwitterionic adducts of N-heterocycles to electrophilic acetylenes as a master key to diversity and complexity of fundamental nitrogen heterocycles. Tetrahedron Letters, 2020, 61, 151991.	1.4	13
258	Sulfur derivatives of vinyl ethers. Sulfur Reports, 1994, 15, 339-380.	0.4	12
259	A CONVENIENT SYNTHESIS OF TERTIARY PHOSPHINES FROM RED PHOSPHORUS AND ARYL- OR HETEROARYLETHENES. Phosphorus, Sulfur and Silicon and the Related Elements, 1997, 126, 125-128.	1.6	12
260	Title is missing!. Russian Journal of General Chemistry, 2002, 72, 371-375.	0.8	12
261	Regio- and stereospecific addition of phosphines to cyanoacetylenes. Tetrahedron, 2003, 59, 4789-4794.	1.9	12
262	1H and 13C NMR Study of Bifurcated Intramolecular Hydrogen Bonds in 2,6-Bis(2-pyrrolyl)pyridine and 2,6-Bis(1-vinyl-2-pyrrolyl)pyridine. Russian Journal of Organic Chemistry, 2005, 41, 1516-1521.	0.8	12
263	Reactions of 1,2-dihaloethanes with chalcogenide anions. Russian Journal of Organic Chemistry, 2006, 42, 652-658.	0.8	12
264	Direct vinylation of glucose derivatives with acetylene. Tetrahedron, 2007, 63, 11661-11665.	1.9	12
265	2-Arylazo-1-vinylpyrroles: Free-radical polymerization and copolymerization. Polymer Science - Series B, 2007, 49, 292-296.	0.8	12
266	Nanocomposites of red phosphorus as novel phosphorylating reagents. Doklady Chemistry, 2009, 427, 153-155.	0.9	12
267	Unexpected elimination of methanol from 6-(alkylsulfanyl)-5-methoxy-2,3-dihydropyridines using t-BuOK-DMSO: an access to 2-alkyl-6-(alkyl-sulfanyl)pyridines. Chemistry of Heterocyclic Compounds, 2011, 46, 1536-1538.	1.2	12
268	From 4,5,6,7-tetrahydroindole to functionalized furan-2-one–4,5,6,7-tetrahydroindole–cyclobutene sequence in two steps. Tetrahedron, 2011, 67, 4832-4837.	1.9	12
269	Three-component reaction between imidazoles, isocyanates, and cyanophenylacetylene: a short-cut to N-(Z)-alkenylimidazole-2-carboxamides. Tetrahedron Letters, 2012, 53, 7040-7043.	1.4	12
270	Water-soluble silver nanocomposites with 1-Vinyl-1,2,4-triazole copolymer. Doklady Chemistry, 2013, 449, 87-88.	0.9	12

#	Article	IF	CITATIONS
271	Alkali Metal Thioselenophosphinates, M[SeSPR ₂]: Oneâ€Pot Multicomponent Synthesis, DFT Study, and Synthetic Application. European Journal of Inorganic Chemistry, 2013, 2013, 415-426.	2.0	12
272	One-pot tandem synthesis of fluorescent 5-naphthyl-3(2H)-furanones. Tetrahedron, 2013, 69, 3714-3720.	1.9	12
273	Improved method for the synthesis of 1-vinylindole. Chemistry of Heterocyclic Compounds, 2013, 49, 404-407.	1.2	12
274	One-pot synthesis of pyrroles from ketones, hydroxylamine, and 1,2-dibromoethane in the system KOH-DMSO. Russian Journal of Organic Chemistry, 2014, 50, 1775-1778.	0.8	12
275	Ringâ€Opening of Pyridines with AcylÂacetylenes and Water: Straightforward Access to 5â€{(<i>Z</i>)â€Acylethenyl]aminoâ€2,4â€pentadienals. European Journal of Organic Chemistry, 2015, 2015, 7876-7879.	2.4	12
276	Nucleophilic addition to acetylenes in superbasic catalytic systems: XVIII. Vinylation of phenols and naphthols with acetylene. Russian Journal of Organic Chemistry, 2015, 51, 188-194.	0.8	12
277	Base-catalyzed α-vinylation of ketones with acetylenes as a key step in one-pot synthesis of pyrazolines and pyrazoles. Mendeleev Communications, 2015, 25, 131-132.	1.6	12
278	New heterospin chain-polymers based on Cu(hfac)2 complex with TEMPO derivatives bearing β-(oxy)acrylate moiety: Synthesis, structural and magnetic properties. Polyhedron, 2016, 119, 293-299.	2.2	12
279	A new access to tri(1-naphthyl)phosphine and its catalytically active palladacycles and luminescent Cu(I) complex. Inorganic Chemistry Communication, 2017, 86, 94-97.	3.9	12
280	2-Halopyridines in the triple reaction in the P /KOH/DMSO system to form tri(2-pyridyl)phosphine: Experimental and quantum-chemical dissimilarities. Mendeleev Communications, 2018, 28, 472-474.	1.6	12
281	One-Pot Metal-Free Synthesis of 3-CF3-1,3-Oxazinopyridines by Reaction of Pyridines with CF3CO-Acetylenes. Molecules, 2019, 24, 3594.	3.8	12
282	Towards C1 chemistry: methanol vinylation by CaC ₂ in water in the presence of potassium or sodium carbonates. Journal of Chemical Technology and Biotechnology, 2019, 94, 1945-1950.	3.2	12
283	Superbase-promoted multi-molecular acetylene/arylamine self-organization to 1-arylpyrroles. Mendeleev Communications, 2020, 30, 109-111.	1.6	12
284	Selenium Nanocomposites in Natural Matrices as Potato Recovery Agent. International Journal of Molecular Sciences, 2021, 22, 4576.	4.1	12
285	Base-Catalyzed [3 + 2] Cycloaddition of <i>N-</i> Benzyl Ketimines to Arylacetylenes Followed by Oxidation: A One-Pot Access to Polyarylated 2 <i>H</i> -Pyrroles via Intermediate Pyrrolines. Organic Letters, 2021, 23, 4121-4126.	4.6	12
286	Stereoselective reduction of 1-acyl-2-phenylacetylenes with triphenylphosphine in water: efficient synthesis of E-chalcones. Arkivoc, 2011, 2011, 183-188.	0.5	12
287	Sulfur-Containing Vinyl Ethers. Sulfur Reports, 1994, 15, 237-310.	0.4	11
288	An example of the facile C-vinylation of pyrroles. Mendeleev Communications, 1998, 8, 119.	1.6	11

#	Article	IF	CITATIONS
289	Pyrroles as C-nucleophiles in reactions with acylacetylenes. Russian Chemical Bulletin, 1999, 48, 1542-1547.	1.5	11
290	Direct Vinylation of Cholesterol with Acetylene. Synthesis, 2000, 2000, 1521-1522.	2.3	11
291	Title is missing!. Russian Journal of Organic Chemistry, 2001, 37, 1553-1558.	0.8	11
292	Functionally substituted 1,3-diethenyl [1,2- c][1,3]pyrrolothiazoles from pyrrole-2-carbodithioates. Sulfur Letters, 2002, 25, 87-93.	0.3	11
293	Unexpected double α,β-addition of secondary phosphine chalcogenides to 3-phenyl-2-propynenitrile. Mendeleev Communications, 2005, 15, 183-184.	1.6	11
294	Easy α- to β-migration of an enol moiety on a pyrrole ring. Tetrahedron Letters, 2006, 47, 3645-3648.	1.4	11
295	Facile coupling of 2â€(1â€ethylthioethenyl)pyrroles with amines: A route to 2â€(1â€aminoethenyl)pyrroles and 1â€aminoâ€3â€iminopyrrolizines. Journal of Heterocyclic Chemistry, 2007, 44, 505-513.	2.6	11
296	Complex of tris(Z-styryl)phosphine with PdCl2 as a new catalyst for the Sonogashira reaction. Mendeleev Communications, 2008, 18, 318-319.	1.6	11
297	(Z)-1-Organyl-2-(2,4-dicyano-1,3-diphenyl-1,3-butadienyl)imidazoles from 1-substituted imidazoles with phenylcyanoacetylene. Mendeleev Communications, 2009, 19, 42-44.	1.6	11
298	Radical addition of secondary phosphine sulfides and selenides to vinyl tellurides. Mendeleev Communications, 2010, 20, 346-347.	1.6	11
299	Selective synthesis of hydrazinium diselenophosphinates from secondary phosphines, elementary selenium, and hydrazine. Russian Chemical Bulletin, 2010, 59, 1671-1673.	1.5	11
300	Chemo-, regio- and stereospecific addition of adenine and 8-azaadenine to α,β-acetylenic γ-hydroxy nitriles: a short-cut to novel acyclic adenosine analogues. Tetrahedron, 2010, 66, 1699-1705.	1.9	11
301	A three-component domino reaction of 2-tetralone, hydroxylamine and acetylene: a one-pot, highly regioselective synthesis of 4,5-dihydrobenz[e]indoles. Tetrahedron Letters, 2010, 51, 1690-1692.	1.4	11
302	Reaction of Red Phosphorus with 4-Methoxystyrene in KOH-DMSO System: One-Pot Synthesis of Tris[2-(4-methoxyphenyl)ethyl]phosphane Oxide. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 186, 98-104.	1.6	11
303	Exceptionally Easy Ring Cleavage of Benzimidazoles by α,β-Acetylenic γ-Hydroxy Nitriles and Water. Synthesis, 2010, 2010, 1536-1542.	2.3	11
304	Rapid and Convenient One-Pot Method for the Preparation of Alkali Metal Phosphinodiselenoates. Synthesis, 2010, 2010, 2463-2467.	2.3	11
305	Specific features of formation of silver nanoparticles in the polymer matrix. Doklady Chemistry, 2011, 437, 47-49.	0.9	11
306	Free-radical addition of phosphine to vinyl ethers: atom-economic synthesis of tris(2-organyloxyethyl)phosphines and their derivatives. Mendeleev Communications, 2011, 21, 17-18.	1.6	11

#	Article	IF	CITATIONS
307	Metal-Free Hydrophosphanation of 1-Vinylimidazoles with Secondary Phosphanes: A Straightforward Atom-Economic Route to Tertiary Phosphanes with Imidazolyl Substituents. Synlett, 2011, 2011, 94-98.	1.8	11
308	One-pot synthesis of ultra-branched mixed tetradentate tripodal phosphines and phosphine chalcogenides. Tetrahedron, 2012, 68, 9218-9225.	1.9	11
309	Structural studies of meso-CF3-3(5)-aryl(hetaryl)- and 3,5-diaryl(dihetaryl)-BODIPY dyes by 1H, 13C and 19F NMR spectroscopy and DFT calculations. Journal of Fluorine Chemistry, 2013, 145, 51-57.	1.7	11
310	Prebiotic effect of native noncovalent arabinogalactan—flavonoid conjugates on bifidobacteria. Russian Chemical Bulletin, 2014, 63, 2189-2194.	1.5	11
311	Synthesis of silver-containing nanocomposites based on humic substances of brown coal and their antioxidant activity. Doklady Chemistry, 2014, 456, 72-75.	0.9	11
312	Alkyland arylketone reactions with phenylacetylene promoted by KOH—DMSO superbase: a quantum chemical study. Russian Chemical Bulletin, 2015, 64, 518-524.	1.5	11
313	Modification of arabinogalactan propargyl ethers by triazolyl functions. Carbohydrate Polymers, 2015, 115, 294-304.	10.2	11
314	Aluminium oxide-mediated cross-coupling of pyrroles with 1-bromo-2-(trifluoroacetyl)acetylene: a quantum-chemical insight. Mendeleev Communications, 2016, 26, 480-482.	1.6	11
315	Direct functionalization of the C—H bond in (hetero)arenes: aerobic photoinduced oxidative coupling of azines with aromatic nucleophiles (SN H-reactions) in the presence of a CdS/TiO2 photocatalyst. Russian Chemical Bulletin, 2016, 65, 445-450.	1.5	11
316	Development of Antimicrobial Nano-Selenium Biocomposite for Protecting Potatoes from Bacterial Phytopathogens. Nanotechnologies in Russia, 2017, 12, 553-558.	0.7	11
317	Cyclizations of The Isothiocyanatesâ€Derived Azatrienes: The CuBr–Catalyzed Switching from Thiophenes to Pyrroles. European Journal of Organic Chemistry, 2018, 2018, 5961-5971.	2.4	11
318	Regiocontrolled synthesis of 2,4,6-triarylpyridines from methyl ketones, electron-deficient acetylenes and ammonium acetate. Organic and Biomolecular Chemistry, 2021, 19, 2703-2715.	2.8	11
319	Stereoactive lone pair of electrons on bismuth(III): tris(3-hydroxy-) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50) 262 Td (2 0.5	2-methyl-4H- 11
320	Synthesis of novel alkaloid derivatives from vinyl ether of lupinine and PH-addends. Arkivoc, 2009, 2009, 260-267.	0.5	11
321	Catalyst-Free Annulation of Acylethynylpyrroles with 1-Pyrrolines: A Straightforward Access to Tetrahydrodipyrrolo[1,2- <i>a</i> :1′,2′- <i>c</i>]imidazoles. Journal of Organic Chemistry, 2022, 87, 9518-9531.	3.2	11
322	Basicity of saturated solutions of alkali metal hydroxides in dimethylsulfoxide. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1986, 35, 682-686.	0.0	10
323	Divinyl Disulfides: Synthesis and Properties. Sulfur Reports, 1992, 12, 1-55.	0.4	10
324	Base-Catalyzed Addition of Phosphine to Aryl- and Hetarylethynes. An Efficient Method for the Preparation of 2-Substituted Trivinylphosphines. Synthesis, 1995, 1995, 387-388.	2.3	10

#	Article	IF	CITATIONS
325	Sulfurization of polymers. Russian Chemical Bulletin, 2000, 49, 863-869.	1.5	10
326	Synthesis of 5-alkoxy-2-alkylthio-3-pyrrol-2-ylpyrroles. Chemistry of Heterocyclic Compounds, 2000, 36, 876-877.	1.2	10
327	A Convenient Synthesis of Primary 2-Hydroxyorganophosphines from Red Phosphorus and Oxiranes. Synthesis, 2000, 2000, 65-66.	2.3	10
328	Sulfur-rich copolymers of sulfur with 5-vinylbicyclo[2.2.1]hept-2-ene and tricyclo[5.2.1.0 2.6]deca-3,8-diene as prospective cathode materials for lithium cells. Sulfur Letters, 2002, 25, 219-227.	0.3	10
329	Organylthiochloroacetylenes: VI. Reaction of Alkylthiochloroacetylenes with Sodium Azide. Russian Journal of General Chemistry, 2003, 73, 782-785.	0.8	10
330	Addition of secondary phosphines to a vinyl ether of diacetone-d-glucose: a new approach to optically active phosphines and their derivatives. Tetrahedron Letters, 2004, 45, 9143-9145.	1.4	10
331	Reactions of Elemental Phosphorus and Phosphine with Electrophiles in Superbasic Systems: XVI. Phosphorylation of Benzyl Chloride with Elemental Phosphorus and Phosphine. Russian Journal of General Chemistry, 2005, 75, 684-688.	0.8	10
332	Unexpected formation of 4-methyl-1-vinyl-δ-carboline in the reaction of 3-acetylindole oxime with acetylene. Mendeleev Communications, 2007, 17, 40-42.	1.6	10
333	A peculiar vinylation of 1-substituted imidazoles with, α,β-acetylenic γ-hydroxyacid nitriles. Mendeleev Communications, 2007, 17, 237-238.	1.6	10
334	Facile Synthesis of Hyperâ€Branched Tetraphosphanes and Tetraphosphane Chalcogenides. European Journal of Organic Chemistry, 2009, 2009, 3427-3431.	2.4	10
335	Nucleophilic addition to acetylenes in superbasic catalytic systems: XVI. Vinylation of alcohols of the furan series under atmospheric pressure. Russian Journal of Organic Chemistry, 2009, 45, 131-134.	0.8	10
336	Facile synthesis of size-tunable micro-octahedra via metal–organic coordination. Chemical Communications, 2009, , 5457.	4.1	10
337	Synthesis of Đž-2-(acyl)vinylketoximes and their unusual rearrangements into 2- and 3-acyl-substituted pyrroles. Tetrahedron Letters, 2010, 51, 6189-6191.	1.4	10
338	One-Pot Vinylation of Secondary Phosphine Chalcogenides with Vinyl Sulfoxides. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 1838-1844.	1.6	10
339	Synthesis and Structural Characterization of the First Europium(III) Pyridylphosphine Complex, [Eu(N,N',N―2-Py3P)(NO3)3]. Mendeleev Communications, 2012, 22, 294-296.	1.6	10
340	Oxidative metalâ€free crossâ€coupling of secondary phosphine chalcogenides and benzenediols: Synthesis of phosphinochalcogenoic <i>O</i> â€diesters. Heteroatom Chemistry, 2012, 23, 322-328.	0.7	10
341	Propargyloxy- and allenyloxymethylferrocenes: Synthesis andÂoligomerization. Journal of Organometallic Chemistry, 2013, 745-746, 1-7.	1.8	10
342	Synthesis of 3,3-dimethyl-2-phenyl-3H-pyrrole from Isopropyl Phenyl Ketoxime and Acetylene: A Side Formation of 4,4-dimethyl-5-phenyl-1-vinyl-2-pyrrolidinone as Clue to the Reaction Mechanism. Mendeleev Communications, 2014, 24, 100-101.	1.6	10

Boris A Trofimov

#	Article	IF	CITATIONS
343	DFT study and dynamic NMR evidence for cis-trans conformational isomerism in square planar Ni(II) thioselenophosphinate, Ni(SeSPPh2)2. Journal of Organometallic Chemistry, 2014, 768, 151-156.	1.8	10
344	Reaction of 1-substituted benzimidazoles with acylacetylenes and water: ring-opening versus ring-expansion and isotopic effect of deuterium. Tetrahedron, 2015, 71, 2891-2899.	1.9	10
345	One-Pot Synthesis and Intramolecular Cyclization of 5-(Prop-2-ynylÂsulfanyl)-1H-pyrrol-2-amines: A Simple Approach to 2,7-Dihydrothiopyrano[2,3-b]pyrrol-6-amines. Synthesis, 2016, 48, 4278-4294.	2.3	10
346	Polycyclic bridgehead acetals with enol functionality: one-pot assembly from aliphatic ketones and acetylene in KOH/DMSO suspension. Tetrahedron, 2016, 72, 4510-4517.	1.9	10
347	Acylethynylpyrroles as a platform for the one-pot access to 2-(pyrrol-2-yl)-3-acylpyridines via the dihydrogenative annelation with propargylamine. Tetrahedron Letters, 2018, 59, 4047-4049.	1.4	10
348	Cyanoacetylenes as Triggers and Partners in KOH-Assisted Assemblies of Quinoline-Based Dihydropyrimido[1,2-a]quinolin-3-ones on Water. Journal of Organic Chemistry, 2019, 84, 9726-9733.	3.2	10
349	Superbaseâ€Assisted Selective Synthesis of Triarylphosphines from Aryl Halides and Red Phosphorus: Three Consecutive Different S _N Ar Reactions in One Pot. European Journal of Organic Chemistry, 2019, 2019, 6240-6245.	2.4	10
350	Single-stage synthesis of alkyl-H-phosphinic acids from elemental phosphorus and alkyl bromides. Mendeleev Communications, 2019, 29, 328-330.	1.6	10
351	Acetylene-based two-step diastereoselective synthesis of bridgehead dihydro-oxadiazines using ketones and hydrazine as the only reactants. Chemical Communications, 2019, 55, 2632-2635.	4.1	10
352	Toward Acetylene Renaissance: Functionally Rich <i>N</i> -Aminoindoles from Acetylene Gas, Ketones, and Hydrazines in Two Steps. Organic Letters, 2019, 21, 4275-4279.	4.6	10
353	The Biological Activity of a Selenium Nanocomposite Encapsulated in Carrageenan Macromolecules with Respect to Ring Rot Pathogenesis of Potato Plants. Nanotechnologies in Russia, 2019, 14, 255-262.	0.7	10
354	Catalyst-Free Double CH-Functionalization of Quinolines with Phosphine Oxides via Two S _N ^H Ar Reaction Sequences. Journal of Organic Chemistry, 2020, 85, 4927-4936.	3.2	10
355	Organometal-Free Arylation and Arylation/Trifluoroacetylation of Quinolines by Their Reaction with CF ₃ -ynones and Base-Induced Rearrangement. Journal of Organic Chemistry, 2020, 85, 9993-10006.	3.2	10
356	Asymmetric meso-CF3-BODIPY dyes based on cycloalkanopyrroles. Dyes and Pigments, 2020, 176, 108228.	3.7	10
357	Tricyanovinylpyrroles: synthesis, conformational structure, photosensitizing properties, and electrical conductivity. Arkivoc, 2005, 2001, 37-48.	0.5	10
358	Polymerization of N-vinylpyrrols. Journal of Polymer Science: Polymer Chemistry Edition, 1980, 18, 1547-1550.	0.8	9
359	Protonated forms of 2-(2-furyl)pyrroles and their interconversion: proton NMR and quantum-chemical (MNDO) study. Journal of Organic Chemistry, 1992, 57, 3934-3938.	3.2	9
360	A new method for the synthesis of α,β-acetylenic phosphines. Russian Chemical Bulletin, 1997, 46, 849-850.	1.5	9

#	Article	IF	CITATIONS
361	Reaction of Secondary Phosphine Oxides with Aromatic Aldehydes. Russian Journal of General Chemistry, 2003, 73, 1354-1357.	0.8	9
362	Phosphorylation of Allyl Halides with White Phosphorus. Phosphorus, Sulfur and Silicon and the Related Elements, 2003, 178, 425-429.	1.6	9
363	Atom-economic synthesis of tertiary 2-alkoxyethylphosphine sulfides. Mendeleev Communications, 2004, 14, 216-217.	1.6	9
364	ETHYNETHIOL-BASED POLYENEPOLYSULFIDES FROM ACETYLENE AND ELEMENTAL SULFUR: SYNTHESIS AND PROPERTIES. Phosphorus, Sulfur and Silicon and the Related Elements, 2004, 179, 35-47.	1.6	9
365	Atom-Economic Synthesis of Tris[2-(organylthio)ethyl]phosphine Oxides from Phosphine and Vinyl Sulfides. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1749-1754.	1.6	9
366	Synthesis of New Amino Acids with a 5-Imino-2,5-dihydro-3-furanyl SubstituentÂ-at the Amino Group. Synthesis, 2007, 2007, 2641-2646.	2.3	9
367	Nucleophilic addition of secondary phosphine chalcogenides to, α,β-acetylenic γ-hydroxy acid nitriles and a rearrangement of the adducts. Mendeleev Communications, 2007, 17, 325-326.	1.6	9
368	Fluorescence quenching and laser photolysis of dipyrrolylbenzenes in the presence of chloromethanes. Russian Journal of General Chemistry, 2007, 77, 1386-1394.	0.8	9
369	13C-13C spin-spin coupling constants in structural studies: XL. Conformational analysis of N-vinylpyrroles. Russian Journal of Organic Chemistry, 2007, 43, 880-887.	0.8	9
370	A Straightforward Synthesis of 2-(1-Vinyl-1H-pyrrol-2-yl)-1H-benzimidazoles from 1-Vinyl-1H-pyrrole-2-carbaldehydes and o-Phenylenediamine. Synthesis, 2009, 2009, 3603-3610.	2.3	9
371	Reactions of aminobenzoic acids with α,β-acetylenic γ-hydroxy nitriles: synthesis of functionalized amino acids and unusually facile esterification and acetylene hydration. Tetrahedron, 2009, 65, 2472-2477.	1.9	9
372	Microwave activation of the reaction of red phosphorus with alkanethiolate anions. Russian Journal of General Chemistry, 2009, 79, 2453-2455.	0.8	9
373	Cationic and radical polymerization of N-vinyl-2-phenylpyrrole: Synthesis of electroconducting, paramagnetic and fluorescent oligomers. Synthetic Metals, 2010, 160, 1539-1543.	3.9	9
374	Reaction of Red Phosphorus with Allylbenzene in Superbasic System KOH-DMSO. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1688-1693.	1.6	9
375	One-pot synthesis of 3-(E)-styrylpyrroles from (E)-styrylmethyl ketoximes and acetylene. Mendeleev Communications, 2013, 23, 340-341.	1.6	9
376	Oxidative cross-coupling between secondary phosphine selenides and thiols or dithiols: a facile regio-selective synthesis of thioselenophosphinic S-esters and S-diesters. Tetrahedron Letters, 2013, 54, 3543-3545.	1.4	9
377	New nanobiocomposites of ammonium magnesium phosphate and carrageenan as efficient prebiotics. Doklady Chemistry, 2014, 457, 144-147.	0.9	9
378	A theoretical study of acetone reactions with acetylene and phenylacetylene in the KOH/DMSO superbasic system. Doklady Chemistry, 2014, 457, 126-128.	0.9	9

#	Article	IF	CITATIONS
379	Bacterio- and lymphocytotoxicity of silver nanocomposite with sulfated arabinogalactan. Russian Chemical Bulletin, 2015, 64, 1629-1632.	1.5	9
380	Aerobic addition of secondary phosphine oxides to vinyl sulfides: a shortcut to 1-hydroxy-2-(organosulfanyl)ethyl(diorganyl)phosphine oxides. Beilstein Journal of Organic Chemistry, 2015, 11, 1985-1990.	2.2	9
381	Expedient Access to Functionalized Furan/3(2 <i>H</i>)-furanone Ensembles via Microwave-Assisted Domino Reactions. Synthetic Communications, 2015, 45, 2718-2729.	2.1	9
382	Stereo sensitivity of exchange interactions in Nill and Cull heterospin complexes with 5-formylpyrrolyl-substituted nitroxides. Russian Chemical Bulletin, 2016, 65, 666-674.	1.5	9
383	Opening of the pyridine ring in the system 1,1,1-trifluoro-4-phenylbut-3-yn-2-one–water. Stereoselective synthesis of 5-{[(1Z)-4,4,4-trifluoro-3-oxo-1-phenylbut-1-en-1-yl]amino}penta-2,4-dienal. Russian Journal of Organic Chemistry, 2016, 52, 1857-1860.	0.8	9
384	First Examples of the Atherton–Todd‣ike Reaction in the Absence of Bases. Heteroatom Chemistry, 2016, 27, 44-47.	0.7	9
385	Synthesis of functionalized 2,2′- and 2,3′-bipyrroles via 3-imino-3H-pyrrolizine-2-carbonitriles. Tetrahedron Letters, 2016, 57, 3652-3656.	1.4	9
386	Structural effect in the reductive vinylation/phosphorylation of pyridines with alkyl propiolates and secondary phosphine chalcogenides: protonation vs . zwitterion generation. Mendeleev Communications, 2017, 27, 553-555.	1.6	9
387	3H-Pyrroles as a platform for the catalyst-free construction of dihydropyrrolo[2,1-b]oxazoles: [4â€+â€2]-cycloaddition vs [2â€+â€3]-annulation with 1-cyano-3-hydroxyalkynes. Tetrahedron Letters, 2019, 6 344-347.	j 0, ,4	9
388	Self-Assembly of <i>N</i> -Phenyl-2,5-dimethylpyrrole from Acetylene and Aniline in KOH/DMSO and KOBu <i>^t</i> /DMSO Superbase Systems: A Quantum-Chemical Insight. Journal of Organic Chemistry, 2020, 85, 10617-10627.	3.2	9
389	Calcium Carbide as Acetylene Source in Cascade Assemblies of Hydroxypyrrolines and 3 <i>H</i> â€Pyrroles from Ketoximes. ChemistrySelect, 2020, 5, 3434-3437.	1.5	9
390	Multimolecular self-organization of acetylene and arylamines into 1-aryl-3-ethyl-4-vinylpyrroles in the KOBut/DMSO system. Mendeleev Communications, 2020, 30, 315-317.	1.6	9
391	(Pyrrole-2,5-Diyl)-Bis(Nitronyl Nitroxide) and-Bis(Iminonitroxide): Specific Features of the Synthesis, Structure, and Magnetic Properties. Molecules, 2020, 25, 1503.	3.8	9
392	Cascade Assembly of 4,5,6,7-Tetrahydroindole from Cyclohexanone Oxime and Acetylene in the KOH/DMSO Superbase Medium: AÂQuantum Chemical Study. Journal of Organic Chemistry, 2020, 85, 6463-6470.	3.2	9
393	Multimolecular Self-Organization of 1-Acetyl-1,3-bis(haloarylamines) in KOH/DMSO System: From Acetylene Gas and <i>o</i> -Halo Arylamines toward a Higher Molecular Complexity and Diversity. Organic Letters, 2021, 23, 4743-4748.	4.6	9
394	Metal-free SHN cross-coupling of pyridines with phosphine chalcogenides: polarization/deprotonation/oxidation effects of electron-deficient acetylenes. New Journal of Chemistry, 2021, 45, 6206-6219.	2.8	9
395	Electron-Deficient Acetylenes as Three-Modal Adjuvants in SNH Reaction of Pyridinoids with Phosphorus Nucleophiles. Molecules, 2021, 26, 6824.	3.8	9
396	Protonation of 2-(2-thienyl)pyrrole and 2-(2-thienyl)-1-vinylpyrroles. Journal of Physical Organic Chemistry, 1993, 6, 471-477.	1.9	8

#	Article	IF	CITATIONS
397	5,6-Dihydropyridines from isothiocyanates and lithiated 1-(alkylthio)propynes. Russian Chemical Bulletin, 1996, 45, 2670-2671.	1.5	8
398	Title is missing!. Russian Journal of General Chemistry, 2001, 71, 721-723.	0.8	8
399	Title is missing!. Russian Journal of Organic Chemistry, 2001, 37, 940-945.	0.8	8
400	Title is missing!. Russian Journal of Organic Chemistry, 2002, 38, 1088-1092.	0.8	8
401	Title is missing!. Russian Journal of Organic Chemistry, 2002, 38, 1681-1685.	0.8	8
402	[3,2]-Sigmatropic Rearrangement of Acyloxy Nitronic Acids into Geminal Acyloxy Nitroso Compounds. Russian Journal of Organic Chemistry, 2002, 38, 1431-1433.	0.8	8
403	Synthesis and X-Ray Diffraction Study of 2-(2-Acyl-1-phenylethenyl)pyrroles. Russian Journal of Organic Chemistry, 2003, 39, 1636-1643.	0.8	8
404	Reactions of Elemental Phosphorus with Electrophiles in Super Basic Systems: XVII. Phosphorylation of Arylalkenes with Active Modifications of Elemental Phosphorus. Russian Journal of General Chemistry, 2005, 75, 1367-1372.	0.8	8
405	Nucleophilic Addition to Acetylenes in Superbasic Catalytic Systems: XIV. Vinilation of Diols in a System CsF-NaOH. Russian Journal of Organic Chemistry, 2005, 41, 661-666.	0.8	8
406	A peculiar selective rearrangement during the NiS-catalysed dehydrogenation of 4,5-dihydro-1H-benz[g]indole. Mendeleev Communications, 2007, 17, 296-298.	1.6	8
407	Electrophilic addition of alcohols to 1-vinyl-2-phenylazopyrroles and unexpected formation of 2-methylquinoline. Russian Journal of Organic Chemistry, 2007, 43, 1495-1501.	0.8	8
408	Synthesis of 1-vinylpyrrole-2-carbonitriles. Tetrahedron Letters, 2009, 50, 97-100.	1.4	8
409	Nanodispersed state of metals and their migration in carbonaceous natural media. Doklady Earth Sciences, 2009, 425, 334-337.	0.7	8
410	Reaction of divinyl selenide with secondary phosphine chalcogenides. Russian Journal of General Chemistry, 2010, 80, 1602-1608.	0.8	8
411	Three-component reaction of secondary phosphines with elemental selenium and amines. Russian Journal of Organic Chemistry, 2010, 46, 592-593.	0.8	8
412	Optimization of the synthesis of 2-phenyl-1,2,3-triazole. Chemistry of Heterocyclic Compounds, 2010, 46, 79-81.	1.2	8
413	Effect of silver nanoparticles on the thermal characteristics of nanocomposites of galactose-containing polysaccharides. Doklady Chemistry, 2011, 439, 187-189.	0.9	8
414	Reaction of divinyl telluride with secondary phosphine chalcogenides. Russian Journal of General Chemistry, 2011, 81, 2506-2509.	0.8	8

#	Article	IF	CITATIONS
415	Metal complexes with N-alkenylimidazoles: synthesis, structures, and biological activity. Russian Chemical Bulletin, 2011, 60, 601-614.	1.5	8
416	Reaction of primary phosphines with elemental sulfur and alkali metal hydroxides (MOH, M=Na, K, Cs): a novel and facile three-component synthesis of trithiophosphonates. Tetrahedron Letters, 2011, 52, 398-400.	1.4	8
417	Oligomerization of phenylferrocenylacetylene under the action of WCl6. Journal of Organometallic Chemistry, 2012, 706-707, 124-127.	1.8	8
418	Synthesis of tris(2-pyridyl)phosphine from red phosphorus and 2-bromopyridine in the CsF-NaOH-DMSO superbasic system. Doklady Chemistry, 2012, 445, 164-165.	0.9	8
419	Superbase-Assisted Addition of Phosphine to 1-Methoxy-4-vinylbenzene: Toward a Rare Family of Organic Phosphines. Synthetic Communications, 2012, 42, 1685-1694.	2.1	8
420	Colloids of Gold Nanoparticles Protected from Aggregation with Arabinogalactan. Macromolecular Symposia, 2012, 317-318, 1-6.	0.7	8
421	Novel quinine, lupinine, and anabasine derivatives containing dithiophosphinate groups. Chemistry of Heterocyclic Compounds, 2012, 48, 448-452.	1.2	8
422	Base-catalyzed O-vinylation of tertiary propargylic alcohols with acetylene: First examples. Mendeleev Communications, 2012, 22, 62-63.	1.6	8
423	Tandem regio- and stereospecific cyclization of ethyl isonicotinate with cyanoacetylenic alcohols to provide novel polycondensed heterocyclic systems. Tetrahedron Letters, 2012, 53, 927-930.	1.4	8
424	A three-component reaction between 1-substituted-2-methylimidazoles, cyanophenylacetylene, and various aldehydes: stereoselective synthesis of (Z)-(2-cyano-1-phenyl)vinyl ethers of 2-(2-hydroxyalkyl)imidazoles. Tetrahedron Letters, 2013, 54, 4693-4696.	1.4	8
425	Superbase-catalyzed addition of ketones to propargyl and allenyl ethers in the KOH (KOBut)/DMSO system. Mendeleev Communications, 2013, 23, 204-205.	1.6	8
426	Vinylation of cellulose in superbase catalytic systems: towards new biodegradable polymer materials. Cellulose, 2013, 20, 1201-1214.	4.9	8
427	Nanosized Pd(0)-arabinogalactan composites as catalysts in the Sonogashira reaction. Russian Journal of Organic Chemistry, 2013, 49, 412-416.	0.8	8
428	Nucleophilic addition of methanol and methanethiol to acetylene in the superbasic system KOH-DMSO: a quantum chemical model. Russian Chemical Bulletin, 2013, 62, 26-32.	1.5	8
429	Reactions of 2- and 4-pyrones with secondary phosphine chalcogenides: a facile synthesis of functional phosphorylated pyrones. Tetrahedron Letters, 2013, 54, 6772-6775.	1.4	8
430	Synthesis of 3-[5-(biphenyl-4-yl)pyrrol-2-yl]-1-phenylprop-2-yn-1-ones by palladium-free cross-coupling between pyrroles and haloalkynes on aluminum oxide. Russian Chemical Bulletin, 2013, 62, 88-92.	1.5	8
431	Nucleophilic addition of phosphine to 4-chlorostyrenes in the KOH-DMSO system. Russian Chemical Bulletin, 2013, 62, 2495-2497.	1.5	8
432	Synthesis of 5-Thienylfuran-3(2H)-ones via the Microwave-Assisted Tandem Reaction of Cyanopropargylic Alcohols with Thiophene-2-carboxylic Acids. Synthesis, 2013, 45, 3435-3441.	2.3	8

#	Article	IF	CITATIONS
433	Synthesis of Functional Tripodal Phosphines with Amino and Ether Groups by the Hydrophosphination of Trivinyl Ethers with Secondary Phosphines. Synthesis, 2014, 46, 653-659.	2.3	8
434	Reaction of Vinyl Selenides with Secondary Phosphines and Elemental Selenium: Oneâ€Pot Selective Synthesis of a New Family of Diselenophosphinic <i>Se</i> â€Esters. Heteroatom Chemistry, 2014, 25, 135-139.	0.7	8
435	Reaction of Tri(2â€pyridyl)phosphine with Electronâ€Deficient Alkynes in Water: Stereoselective Synthesis of Functionalized Pyridylvinylphosphine Oxides. European Journal of Organic Chemistry, 2014, 2014, 639-643.	2.4	8
436	Complexation of tris(2-pyridyl)phosphine chalcogenides with copper(I) halides: The selective formation of scorpionate complexes, [Cu(N,N′,N″-2-Py3PX)Hal] (X=O, S and Se). Polyhedron, 2015, 90, 1-6.	2.2	8
437	Green synthesis of tertiary alkylselanylphosphine chalcogenides via catalyst- and solvent-free addition of secondary phosphine chalcogenides to vinyl selenides. Journal of Sulfur Chemistry, 2015, 36, 526-534.	2.0	8
438	Reaction of imidazole derivatives with trifluoromethylated arylacetylenes. Journal of Fluorine Chemistry, 2016, 188, 157-163.	1.7	8
439	Insertion of 1,3-diphenylprop-2-yn-1-one into imidazo[4,5-b]pyridines in the presence of water: one-pot synthesis of pyrido[2,3-b][1,4]diazocin-9-ones. Mendeleev Communications, 2016, 26, 16-18.	1.6	8
440	Straightforward Solventâ€Free Synthesis of Tertiary Phosphine Chalcogenides from Secondary Phosphines, Electronâ€Rich Alkenes, and Elemental Sulfur or Selenium. Heteroatom Chemistry, 2016, 27, 48-53.	0.7	8
441	(Imidazolâ€2â€yl)methylâ€1,3â€propanediones: Regioselective C–H Functionalization of the Imidazole Ring by Acylacetylene/Aldehyde Pairs. European Journal of Organic Chemistry, 2016, 2016, 1199-1204.	2.4	8
442	Metalâ€Free Selective Synthesis of 1,4â€Dihydropyridazines from Hydroxypyrrolines and Hydrazines. European Journal of Organic Chemistry, 2017, 2017, 4004-4010.	2.4	8
443	Acetylene as a Driving and Organizing Molecule in Oneâ€Pot Transitionâ€Metalâ€Free Synthesis of Furans using Chalcones and their Analogues. Asian Journal of Organic Chemistry, 2017, 6, 707-711.	2.7	8
444	Study of spontaneous <i>E</i> /i>/ <i>Z</i> isomerization of bis[(<i>Z</i>)â€cyanomethylidene]â€diazapentacyclodienedicarboxylates by ¹ H, ¹³ C, and ¹⁵ N NMR spectroscopy, Xâ€ray, and quantum chemical calculation data. Magnetic Resonance in Chemistry, 2017, 55, 563-569.	1.9	8
445	DBU as a scaffold for the synthesis of [1,3]oxazolo[2 ' ,3 ' : 2,3]pyrimido-[1,2- a]azepines: annulation with aromatic cyanopropargylic alcohols. Mendeleev Communications, 2018, 28, 128-130.	1.6	8
446	A New Facet of Azatriene Reactivity: A Short Cut to 5â€Aminoâ€3â€methylâ€4â€(1 <i>H</i> â€pyrrolâ€1â€yl)thiopheneâ€2â€carboxylates and 5â€Aminoâ€3â€methylâ€4â€(1 <i>H</i> â€pyrrolâ€1â€yl)thiopheneâ€2â€carbonitriles. European Journal of Orgar 2018, 2018, 1953-1963.	nic Chem	iist ⁸ y,
447	Synthesis of Chalcogen-Containing Nanocomposites of Selenium and Tellurium with Arabinogalactan and a Study of Their Toxic and Antimicrobial Properties. Nanotechnologies in Russia, 2018, 13, 290-294.	0.7	8
448	Two classes of heterocycles—6,8â€dioxabicyclo[3.2.1]octanes and cyclopentenols from the same reagents: A quantumâ€chemical comparison of mechanism. International Journal of Quantum Chemistry, 2018, 118, e25689.	2.0	8
449	2â€Aminoâ€5â€(cyanomethylsulfanyl)â€1 <i>H</i> â€pyrroles from Propargylamines, Isothiocyanates, and Bromoacetonitrile by Oneâ€Pot Synthetic Protocol. ChemistrySelect, 2020, 5, 5726-5731.	1.5	8
450	Functionalized Hexahydropyrrolo[2,1â€ <i>b</i>]oxazoles from Catalystâ€Free Annulation of Δ ¹ â€Pyrrolines with Electronâ€Deficient Propargylic Alcohols. European Journal of Organic Chemistry, 2020, 2020, 4181-4192.	2.4	8

#	Article	IF	CITATIONS
451	Oxaazabicyclooctene Oxides, Another Type of Bridgehead Nitrones: Diastereoselective Assembly from Acetylene Gas, Ketones, and Hydroxyl Amine. Journal of Organic Chemistry, 2020, 85, 6732-6740.	3.2	8
452	Diene autocondensation of 3,3-dimethyl-2-phenyl- and 3,3-dimethyl-2-(2-thienyl)-3H-pyrroles. Chemistry of Heterocyclic Compounds, 1989, 25, 1314-1315.	1.2	7
453	New synthesis of quinolines from lithiated allenes and isothiocyanates. Russian Chemical Bulletin, 1996, 45, 2873-2874.	1.5	7
454	Reaction of lithioalkoxyallenes with isothio-cyanates: Synthesis of pyrroles and 5,6-dihydropyridines. Chemistry of Heterocyclic Compounds, 1996, 32, 781-782.	1.2	7
455	Generation of Phosphide Anions from Phosphorus Red and Phosphine in Strongly Basic Systems to Form Organylphosphines and -Oxides. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 109, 601-604.	1.6	7
456	t-Butyl Alcohol-Assisted Fission of the P-P Bonds in Red Phosphorus with Lithium in Liquid Ammonia. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 111, 175-175.	1.6	7
457	Reaction of Red Phosphorus and Phosphine with Aryl(Hetaryl)Ethenes and -Ethynes. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 111, 174-174.	1.6	7
458	Multiple bond migration with participation of a protophilic agent. Russian Chemical Bulletin, 1999, 48, 35-41.	1.5	7
459	Trifluoroacetylation of O-vinyl acetoxime. Mendeleev Communications, 1999, 9, 238-239.	1.6	7
460	One-step synthesis of unsymmetrical tertiary phosphine oxides from red phosphorus and organyl halides. Russian Chemical Bulletin, 2000, 49, 1320-1320.	1.5	7
461	Reaction of alkylthiochloroacetylenes with sodium azide. Russian Chemical Bulletin, 2001, 50, 751-752.	1.5	7
462	Reaction of Vinylpyridines with Active Modifications of Elemental Phosphorus in KOH/DMSO. Chemistry of Heterocyclic Compounds, 2001, 37, 576-580.	1.2	7
463	Cu-Catalyzed Oxidative Phosphorylation of Alkanols with White Phosphorus and H 2 O 2. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 2385-2390.	1.6	7
464	Features of 2-, 3-Aminopyridines and 2-Aminopyrimidine Condensation with 2-Formylimidazoles. Russian Journal of Organic Chemistry, 2002, 38, 1674-1680.	0.8	7
465	Controlled defect formation in elemental phosphorus as method for its chemical activation. Russian Chemical Bulletin, 2003, 52, 1239-1252.	1.5	7
466	Reactions of elemental phoshorus and phosphine with electrophiles in superbasic systems: XIX. Formation of the C-P bond with participation of elemental phosphorus under microwave assistance. Russian Journal of General Chemistry, 2007, 77, 415-420.	0.8	7
467	Synthesis and properties of polyenic oligosulfides derived from acetylene and elemental sulfur. Russian Journal of General Chemistry, 2007, 77, 1559-1566.	0.8	7
468	Novel BODIPY preparations from sterically hindered pyrroles. Synthesis and photophysical behavior in solution, polystyrene nanoparticles, and solid phase. Russian Journal of General Chemistry, 2008, 78, 2247-2256.	0.8	7

#	Article	IF	CITATIONS
469	A Simple Atom-Economic Synthesis of Functional Tertiary Phosphine Chalcogenides Bearing Furan or Tetrahydrofuran Rings. Synthesis, 2009, 2009, 3427-3432.	2.3	7
470	1-Vinylpyrrole-2-carbaldehyde oximes: synthesis, isomerization, and spectral properties. Monatshefte Für Chemie, 2009, 140, 1475-1480.	1.8	7
471	Nanocomposites of silver and 1-vinyl-1,2,4-triazole copolymer with sodium methacrylate. Doklady Chemistry, 2009, 427, 199-201.	0.9	7
472	Novel method for the synthesis of diselenophosphinates. Doklady Chemistry, 2009, 428, 225-227.	0.9	7
473	Nucleophilic addition to acetylenes in superbasic catalytic systems: XVII. Vinyl ethers with furyl and cycloacetal fragments: Synthesis and structure. Russian Journal of Organic Chemistry, 2010, 46, 1383-1387.	0.8	7
474	Directed synthesis of tertiary phosphine chalcogenides with pyridine and hydroxy functions. Russian Journal of General Chemistry, 2011, 81, 315-321.	0.8	7
475	Regio- and stereodirection of addition of tetrazole to α,β-acetylenic γ-hydroxy nitrile: synthesis of 1- and 2-(Z)-(2-cyanoethenyl- 1-hydroxyalkyl)tetrazoles. Chemistry of Heterocyclic Compounds, 2011, 47, 464-469.	1.2	7
476	The reaction of 2â€bromopyridine with a PH ₃ /H ₂ system in the KOH/DMSO suspension: A short route to tris(2â€pyridyl)phosphine. Heteroatom Chemistry, 2012, 23, 411-414.	0.7	7
477	Reactions of 2-aza-1,3,5-trienes with superbases: competition between formation of thiazoles and azepines. Chemistry of Heterocyclic Compounds, 2012, 47, 1430-1435.	1.2	7
478	The "one pot―synthesis of 4,5-dihydrobenzo[g]indole and its 1-vinyl derivative from 1-tetralone, hydroxylamine, and dichloroethane in the system KOH-DMSO. Russian Chemical Bulletin, 2013, 62, 2557-2558.	1.5	7
479	Rearrangement of benzylsulfanyl-substituted 2-aza-1,3,5-triene into 5-phenyl-4,5-dihydro-1,3-thiazole in the t-BuOK-THF-DMSO system. Russian Journal of Organic Chemistry, 2013, 49, 1491-1496.	0.8	7
480	Reaction of hydroxyflavones with secondary phosphine chalcogenides in the CCl4/Et3N system: synthesis of a new family of phosphorylated flavonoids. Tetrahedron Letters, 2014, 55, 4927-4929.	1.4	7
481	Features of gold nanoparticle formation in matrices of humic substances of different origin. Doklady Chemistry, 2015, 460, 13-16.	0.9	7
482	Base-Catalyzed Addition of Ketones to Alkynes as a Key Step in the One-Pot Synthesis of 1-Formyl-2-pyrazolines. Synthesis, 2015, 47, 1329-1336.	2.3	7
483	Formation of 2-ethynyl-3,4-dihydro-2H-pyrroles in the synthesis of 3H-pyrroles from ketoximes and acetylene in the system KOH—DMSO—hexane. Russian Journal of Organic Chemistry, 2015, 51, 1346-1348.	0.8	7
484	Cross-coupling of propargylated arabinogalactan with 2-bromothiophene. Carbohydrate Polymers, 2016, 150, 82-88.	10.2	7
485	Organocatalyzed Microwave-Assisted Competing Cyclization of Cyanopropargylic Alcohols with Carboxylic Acids: 4-Cyano-3(2H)-furanones versus 4-Cyano-[(Z)-3-cyanomethylene]-2,3-dihydroÂfurans. Synthesis, 2016, 48, 1880-1891.	2.3	7
486	Synthesis of Uniquely Functionalized Pyrrolines from Hydroxypyrrolines. European Journal of Organic Chemistry, 2017, 2017, 4609-4616.	2.4	7

#	Article	IF	CITATIONS
487	Synthesis of divinyl sulfide via addition of the hydrogen sulfide anion to acetylene in an alkaline metal hydroxide/DMSO superbasic system: A quantum-chemical insight. Tetrahedron Letters, 2017, 58, 92-96.	1.4	7
488	Reaction of 2-methylquinoline with 3-phenylprop-2-ynenitrile in the KOH—H2O system. Russian Chemical Bulletin, 2017, 66, 2258-2263.	1.5	7
489	Transition-Metal-Free C-Vinylation of Ketones with Acetylenes: A Quantum-Chemical Rationalization of Similarities and Differences in Catalysis by Superbases MOH/DMSO and <i>t</i> BuOM/DMSO (M = Na, K). Journal of Organic Chemistry, 2018, 83, 3719-3726.	3.2	7
490	Transition metal-free cross-coupling of furan ring with haloacetylenes. Tetrahedron, 2018, 74, 1565-1570.	1.9	7
491	An Easy Access to Sulfur Derivatives of 6,8-Dioxabicyclo[3.2.1]octanes, Naturally Abundant Scaffolds. Synthesis, 2018, 50, 2624-2630.	2.3	7
492	Synthesis of Acetylenic Amides with Propyllactam Moieties by In Situ DBU or DBN Ring-Opening Rearrangement in the Presence of Acetylenic Esters. Synthesis, 2018, 50, 853-858.	2.3	7
493	Synthesis of 2-[(5-Amino-1H-pyrrol-2-yl)sulfanyl]acetic Acid Esters: One-Pot Assembly from Propargyl Amines, Isothiocyanates, and AlkylÂ-2-Bromoacetates. Synthesis, 2019, 51, 3697-3708.	2.3	7
494	Metal- and Solvent-free Synthesis of Functionalized DihydrooxaÂzolo[3,2-a]indoles by One-Pot Tandem Assembly of 3H-Indoles and Propargylic Alcohols. Synthesis, 2019, 51, 1445-1454.	2.3	7
495	Conjugated pyrrole/aminoenone and pyrrole/aminoacrylonitrile ensembles: new motives in heterocyclic chemistry. Mendeleev Communications, 2021, 31, 573-583.	1.6	7
496	Pyrroles from ketoximes and acetylene. 29. Synthesis of alkylpyrroles from dialkylketoximes and dichloroethane by reaction with KOH-DMSO. Chemistry of Heterocyclic Compounds, 1985, 21, 46-49.	1.2	6
497	Title is missing!. Russian Journal of General Chemistry, 2001, 71, 1907-1911.	0.8	6
498	Title is missing!. Russian Chemical Bulletin, 2001, 50, 253-260.	1.5	6
499	Theoretical analysis of pyrrole anions addition to carbon disulfide and carbon dioxide. International Journal of Quantum Chemistry, 2002, 88, 542-548.	2.0	6
500	Title is missing!. Chemistry of Heterocyclic Compounds, 2002, 38, 86-94.	1.2	6
501	New Electrochemically Active Highly Sulfurized Polyconjugated Polymers. Russian Journal of Electrochemistry, 2002, 38, 188-192.	0.9	6
502	Title is missing!. Russian Journal of Organic Chemistry, 2002, 38, 1082-1087.	0.8	6
503	4-Phenyl-2-[(Z)-phenylmethylidene]-1,3-dithiole from Elemental Sulfur and Phenylacetylene. Chemistry of Heterocyclic Compounds, 2003, 39, 128-129.	1.2	6
504	Quantum Chemical Study of the Lithium Cation Coordination by Dimethylsulfoxide Molecules. Journal of Structural Chemistry, 2003, 44, 927-931.	1.0	6

#	Article	IF	CITATIONS
505	Nucleophilic addition to acetylenes in superbasic catalytic systems. 12. Vinylation of lupinine. Russian Chemical Bulletin, 2004, 53, 242-244.	1.5	6
506	Controlled Cyclization of 1,3-Dilithiopropargylbenzene Adduct with Phenyl Isothiocyanate: Highly Selective Synthesis of Iminothietane and Iminocyclobutene. Russian Journal of Organic Chemistry, 2004, 40, 753-754.	0.8	6
507	Effect of microwave irradiation on the reaction of elemental sulfur with Phenylacetylene. Doklady Chemistry, 2004, 399, 240-241.	0.9	6
508	Isomer structures of thioketene and its cyclic oligomers. Ab initio calculations. Journal of Structural Chemistry, 2005, 46, 28-33.	1.0	6
509	Cyanoacetylene and Its Derivatives: XXXII. Addition of Ammonia and Methylamine to 4-Hydroxy-4,4-diphenyl-2-butynenitrile. Russian Journal of Organic Chemistry, 2005, 41, 61-66.	0.8	6
510	Cyanoacetylene and Its Derivatives: XXXIII. One-Pot Stereoselective Synthesis of Bis-iminodihydrofurans from 4-Hydroxy-4-methyl-2-pentynonitrile and Aromatic Amines. Russian Journal of Organic Chemistry, 2005, 41, 884-890.	0.8	6
511	Vinylic nucleophilic substitution in functionalized 2-vinylpyrroles: a route to a new family of stable enols. Tetrahedron, 2006, 62, 4146-4152.	1.9	6
512	Superbase-catalysed addition of methanol to propyne and allene: an expedient synthesis of 2-methoxypropene. Mendeleev Communications, 2006, 16, 13-14.	1.6	6
513	Ethynedithiol oligomers as cathode components of lithium-sulfur batteries. Doklady Chemistry, 2007, 414, 125-127.	0.9	6
514	Catalytic oxidation of organic substrates with hydrogen peroxide in two-phase systems in the presence of peroxo-polyoxotungstates containing organic ligands. Reaction Kinetics and Catalysis Letters, 2008, 94, 319-326.	0.6	6
515	Theoretical study of the [1,3]-prototropic rearrangements of oximes and their ethers. Journal of Structural Chemistry, 2008, 49, 216-223.	1.0	6
516	Nucleophilic addition to acetylenes in superbasic catalytic systems: XV. Vinylation of 2-hydroxymethylfuran. Russian Journal of Organic Chemistry, 2008, 44, 120-123.	0.8	6
517	13C-13C spin-spin coupling constants in structural studies: XLII. Stereochemical study on functionalized 2,5-dihydrofuran-2-imines. Russian Journal of Organic Chemistry, 2008, 44, 388-396.	0.8	6
518	Tricyanovinylation of 2-aryl-1-vinylpyrroles: solvent- and substituent controlled chemo- and regioselectivity. Tetrahedron, 2009, 65, 4326-4331.	1.9	6
519	Reaction of red phosphorus (P n) with alkanethiolate anions. Doklady Chemistry, 2009, 427, 164-167.	0.9	6
520	Atom-economic synthesis of ammonium diselenophosphinates from secondary phosphine selenides, elemental selenium, and ammonia. Russian Journal of General Chemistry, 2010, 80, 1383-1384.	0.8	6
521	Superbasic system CsOH/DMSO as a catalyst of nucleophilic addition of acetophenone to phenylacethylene. Russian Journal of General Chemistry, 2010, 80, 1385-1386.	0.8	6
522	New approach to N-vinylpyrroles. Russian Journal of Organic Chemistry, 2010, 46, 773-776.	0.8	6

#	Article	IF	CITATIONS
523	Synthesis and properties of silver and gold nanocomposites in poly-1-vinyl-1,2,4-triazole matrix. Journal of Structural Chemistry, 2010, 51, 105-108.	1.0	6
524	First example of the synthesis of N-vinylpyrrole from methoxy- allene and methoxyethyl isothio- cyanate: unprecedented elimination of methanol from a β-substituted methyl ethyl ether. Chemistry of Heterocyclic Compounds, 2010, 46, 61-65.	1.2	6
525	One-pot selective synthesis of n-vinyl-4,5-dihydrobenzo[g]indole from 1-tetralone and acetylene in the system NH2OH·HCL–KOH–DMSO. Chemistry of Heterocyclic Compounds, 2010, 46, 762-764.	1.2	6
526	A new technology for the synthesis of 4,5,6,7-tetrahydroindole. Doklady Chemistry, 2010, 435, 307-310.	0.9	6
527	Facile Atom-Economic Synthesis of Ammonium Diselenophosphinates via Three-Component Reaction of Secondary Phosphines, Elemental Selenium, and Ammonia. Synthesis, 2010, 2010, 1777-1780.	2.3	6
528	I2-doped and pyrrole ring-iodinated semi-conducting oligomers of N-vinyl-3-alkyl-2-phenylpyrroles. Synthetic Metals, 2010, 160, 2573-2580.	3.9	6
529	A Theoretical study of vinylation of methanol, acetoxime, and methanethiol with acetylene in the KOH-DMSO system. Doklady Chemistry, 2011, 438, 167-169.	0.9	6
530	Atom-Economic, Metal- and Halogen-Free Synthesis of Podands: α,ï‰-Diphosphines and Their Chalcogenides Separated by Alkane Diol Spacers. Synthesis, 2012, 44, 2938-2946.	2.3	6
531	Three-Component Reaction between Vinyl Ethers, Secondary Phosphines, and Elemental Selenium: One-Pot Synthesis of 1-(Alkoxy)ethyl and 1-(Aryloxy)ethyl Phosphinodiselenoates. Synthesis, 2012, 44, 431-438.	2.3	6
532	Chemoselective Reactions of Secondary Phosphine Chalcogenides with Vinyloxyalkylamines: Synthesis of a Novel Family of Functional PhosphinoÑhalcogenоic Amides. Synthesis, 2012, 44, 2786-2792.	2.3	6
533	Ðjhemo- and regioselective modification of adenosine with tertiary cyanopropargylic alcohols. Tetrahedron Letters, 2012, 53, 5769-5772.	1.4	6
534	Chemo- and regioselective reaction of vinyl furfuryl ethers with alcohols. Russian Journal of Organic Chemistry, 2012, 48, 1162-1167.	0.8	6
535	Synthesis of [2-(methoxyaryl)-1-methylethyl]phosphinic acids from red phosphorus and (allyl)(methoxy)benzenes. Russian Chemical Bulletin, 2012, 61, 1787-1791.	1.5	6
536	Metallation of N-vinylpyrroles and -indoles with Hg(OAc)2: N-vinyl vs. pyrrole nucleophilic sites. Dalton Transactions, 2012, 41, 5512.	3.3	6
537	Devinylation of N-vinylpyrroles using mercury(II) acetate. Chemistry of Heterocyclic Compounds, 2012, 47, 1300-1303.	1.2	6
538	Estimation of the antioxidant activity of humic substances from various natural sources of Mongolia. Doklady Chemistry, 2013, 453, 268-269.	0.9	6
539	Click Chemistry with 2-Ethynyl-4,5,6,7-tetrahydroindoles: Towards Functionalized Tetrahydroindole-Triazole Ensembles. Synthesis, 2013, 45, 678-682.	2.3	6
540	2-(1-Hydroxypropyn-2-yl)-1-vinylpyrroles: the first successful Favorsky ethynylation of pyrrolecarbaldehydes. Beilstein Journal of Organic Chemistry, 2015, 11, 228-232.	2.2	6

Boris A Trofimov

#	Article	IF	CITATIONS
541	Dual reactivity of secondary phosphines and their chalcogenides towards 1-(vinyloxy)alkylferrocenes: the switch between α- and β-addition. Tetrahedron, 2015, 71, 1998-2003.	1.9	6
542	Expedient Route to Chalcogenophosphinates with Glucose Moieties via Todd–Atherton‣ike Coupling between Secondary Phosphine Chalcogenides and Diacetoneâ€ <scp>d</scp> â€Glucose in the CCl ₄ /Et ₃ N System. Heteroatom Chemistry, 2015, 26, 329-334.	0.7	6
543	Reaction of (het)aryl cyclohexyl ketoximes with acetylene in the two-phase KOH/DMSO/n-hexane system: en route to spirocyclic 3H-pyrroles. Mendeleev Communications, 2015, 25, 129-130.	1.6	6
544	One-pot synthesis of polyfluoroalkylphosphonylated dihydropyridines with a carboxylate function from pyridines, alkyl propiolates, and bis(fluoroalkyl) phosphonates. Tetrahedron Letters, 2016, 57, 3515-3517.	1.4	6
545	A Facile Linking of the Pyrrole Ring with Functionalized 3(2H)-Furanone Moieties. Synthesis, 2016, 48, 271-280.	2.3	6
546	Effect of metal nanoparticles on the thermal stability and conductivity of nanocomposites. Bulletin of the Russian Academy of Sciences: Physics, 2016, 80, 49-54.	0.6	6
547	Oxidative coupling of hydroxy- or aminoazobenzenes with secondary phosphine chalcogenides: Towards new media-responsive molecular switches. Tetrahedron Letters, 2017, 58, 1992-1995.	1.4	6
548	(Propargylsulfanyl)-2-aza-1,3,5-trienes as a direct source for novel family of highly functionalized 4,5-dihydro-1,3-thiazoles. Tetrahedron, 2017, 73, 1085-1097.	1.9	6
549	Multi-channel annulation of acetylene with 3-methyl-7,8-dihydrocinnolin-5(6 H)-one oxime in the KOH/DMSO superbasic system. Mendeleev Communications, 2017, 27, 344-345.	1.6	6
550	Size crystallographic effects for silver and gold nanoparticles dispersed in a biopolymer matrix. Russian Journal of General Chemistry, 2017, 87, 2369-2375.	0.8	6
551	Silver-containing nanocomposites with antioxidant activity based on humic substances of different origin. Russian Chemical Bulletin, 2017, 66, 143-149.	1.5	6
552	Expeditious Scalable Catalyst-Free One-Pot Synthesis of 4-Alkoxy-5-amino-3-methylthiophene-2-carbonitriles via Sequential ReactionsÂ-of Lithiated Alkoxyallenes with Isothiocyanates and 2-Bromoacetonitrile. Synthesis, 2018, 50, 1891-1900.	2.3	6
553	2,4,6-Trisubstituted 3,4-dihydropyrans from acetylene and ketones: deacetylation in the KOBu t /DMSO system. Mendeleev Communications, 2018, 28, 145-146.	1.6	6
554	Catalyst-free selenylation of acylacetylenes with secondary phosphine selenides and water: A short-cut to bis(2-acylvinyl) selenides. Journal of Organometallic Chemistry, 2018, 867, 79-85.	1.8	6
555	Solvent-free synthesis of 4-chalcogenophosphorylpyridines via <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msubsup><mml:mtext>S</mml:mtext><mml:mtext>N</mml:mtext><mr reaction of pyridines with secondary phosphine chalcogenides. Mendeleev Communications, 2018, 28,</mr </mml:msubsup></mml:mrow></mml:math 	nl:m t æxt>H	l
556	582-583. From acylethynylpyrroles to pyrrole-pyrone ensembles in a one step. Tetrahedron Letters, 2019, 60, 151126.	1.4	6
557	Nonâ€Aromatic 3 <i>H</i> â€Pyrroles in the Reaction with Nucleophiles: Is High Reactivity a Myth?. European Journal of Organic Chemistry, 2019, 2019, 2305-2312.	2.4	6
558	MODIFICATION OF THE ARABINOGALACTAN MATRIX IN THE FORMATION OF METAL–POLYMER NANOBIOCOMPOSITES. Nanotechnologies in Russia, 2019, 14, 41-47.	0.7	6

#	Article	IF	CITATIONS
559	Site- and stereoselective synthesis of bridgehead tetrahydropyrrolo[2,3-c]pyridines from ketoximes and acetylene gas in two synthetic operations. Tetrahedron Letters, 2020, 61, 151533.	1.4	6
560	Catalyst- and Solvent-Free Hydrophosphorylation of Ketones with Secondary Phosphine Oxides: Green Synthesis of Tertiary α-Hydroxyphosphine Oxides. Synthesis, 2020, 52, 2224-2232.	2.3	6
561	Nanobiocomposites of Pharmacophoric Iron and Bismuth Oxides with Arabinogalactan Matrix. Russian Journal of General Chemistry, 2020, 90, 672-679.	0.8	6
562	Arabinogalactan propargyl ethers: Au-catalysed hydroamination by imidazols. Carbohydrate Polymers, 2020, 246, 116638.	10.2	6
563	Aldol Condensation <i>Versus</i> Superbase-Catalyzed Addition of Ketones to Acetylenes: A Quantum-Chemical and Experimental Study. Journal of Organic Chemistry, 2021, 86, 7439-7449.	3.2	6
564	The reaction of 1-ethylthio-3-iminopyrrolizines with hydroxylamine. A new synthesis of 3-aminoisoxazoles. Arkivoc, 2005, 2005, 28-35.	0.5	6
565	Stereoselective annelation of 3-substituted imidazo[4,5-b]pyridines with cyanoacetylenic alcohols and domino rearrangement of the adducts. Arkivoc, 2012, 2012, 229-244.	0.5	6
566	NMR-13C spectra and effects of conjugation in alkoxy- and alkylthioethylenes. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1975, 24, 501-505.	0.0	5
567	Pyrroles from ketoximes and acetylene Chemistry of Heterocyclic Compounds, 1978, 14, 399-401.	1.2	5
568	A new route to 3H-pyrroles. Chemistry of Heterocyclic Compounds, 1985, 21, 1299-1299.	1.2	5
569	Condensation of ketoximes with phenylacetylene. Chemistry of Heterocyclic Compounds, 1992, 28, 406-408.	1.2	5
570	Dimerization of 1-vinyl-4,5,6,7-tetrahydroindole in the presence of acids. Russian Chemical Bulletin, 1996, 45, 407-409.	1.5	5
571	Reactions of alkali metal acetylides with red phosphorus. Mendeleev Communications, 2000, 10, 66.	1.6	5
572	Sulfurization of polymers. Russian Chemical Bulletin, 2000, 49, 870-873.	1.5	5
573	SOME FEATURES OF THE REDUCTION OF POLY(METHYLENE SULFIDES) AND POLY(METHYLENE) TJ ETQq1 1 0.7	'84314 rg[1.6	3T /Overlock
574	Trifluoroacetylation of Ketone O-Vinyloximes. Russian Journal of Organic Chemistry, 2001, 37, 334-338.	0.8	5
575	Reactions of Pyrrole-1- and Pyrrole-2-carbodithioates with Activated Acetylenes. Russian Journal of Organic Chemistry, 2001, 37, 547-551.	0.8	5
576	Title is missing!. Russian Journal of Organic Chemistry, 2001, 37, 1683-1687.	0.8	5

Boris A Trofimov

#	Article	IF	CITATIONS
577	Organylthiochloroacetylenes: IV. Reaction with Thiourea. Russian Journal of General Chemistry, 2001, 71, 1721-1725.	0.8	5
578	Title is missing!. Russian Journal of General Chemistry, 2001, 71, 1717-1720.	0.8	5
579	Title is missing!. Russian Journal of Organic Chemistry, 2001, 37, 1736-1740.	0.8	5
580	Tertiary Phosphine Oxides in Reaction with Benzaldehyde. Russian Journal of General Chemistry, 2003, 73, 877-879.	0.8	5
581	Reactions of 1-Allenylpyrazole and 1-Allenyl-1,2,4-triazole with Hydrogen Chloride and Metal Chlorides. Russian Journal of General Chemistry, 2003, 73, 1634-1640.	0.8	5
582	Electrophilic and Nucleophilic Addition of Alkanethiols to 2-Vinyloxyethylmethacrylate. Phosphorus, Sulfur and Silicon and the Related Elements, 2003, 178, 2087-2093.	1.6	5
583	Theoretical Analysis and Experimental Study of the Spatial Structure and Isomerism of Acetone Azine and Its Cyclization to 3,5,5-Trimethyl-4,5-dihydro-1H-pyrazole. Journal of Structural Chemistry, 2004, 45, 748-755.	1.0	5
584	First Example of Microwave Activation of Elementary Phosphorus in the Reaction with 2-Vinylpyridine. Russian Journal of General Chemistry, 2005, 75, 1844-1845.	0.8	5
585	Free-radical addition of secondary phosphine sulfides to vinyl sulfides. Russian Journal of General Chemistry, 2006, 76, 1514-1515.	0.8	5
586	Transformations of cyanoacetylenic alcohols in the presence of the cyanide ion. Mendeleev Communications, 2006, 16, 228-230.	1.6	5
587	Microwave induced synthesis of diphenylthiophenes from elemental sulfur and styrene. Chemistry of Heterocyclic Compounds, 2006, 42, 1486-1487.	1.2	5
588	Chemoselective noncatalytic addition of secondary phosphine chalcogenides to citral. Russian Journal of General Chemistry, 2007, 77, 409-414.	0.8	5
589	13C-13C spin-spin coupling constants in structural studies: XXXIX. Nonempirical calculations of heteroaromatic oximes. Russian Journal of Organic Chemistry, 2007, 43, 872-879.	0.8	5
590	Ab initio quantum-chemical study of the mechanism of methoxide ion formation in MOH/DMSO/CH3OH systems (M = Li, Na, K). Journal of Structural Chemistry, 2008, 49, 595-599.	1.0	5
591	Chemoselective addition of secondary phosphine oxides to alkyl phenylethynyl ketones. Russian Journal of Organic Chemistry, 2008, 44, 1245-1246.	0.8	5
592	Oxidative devinylation of N-vinylpyrroles. Russian Journal of Organic Chemistry, 2008, 44, 1247-1248.	0.8	5
593	Radical Addition of Secondary Phosphine Sulfides and Selenides to Vinyl Selenides. Synthesis, 2008, 2008, 2743-2746.	2.3	5
594	AB initio quantum chemical study of the reaction mechanism of ethynide ion formation in the C2H2/MOH/DMSO system (M = Li, Na, K). Journal of Structural Chemistry, 2009, 50, 27-33.	1.0	5

#	Article	IF	CITATIONS
595	The peculiar reaction of 2-arylazo-1-vinylpyrroles with trifluoroacetic acid: a novel synthesis of 2-methylquinolines. Tetrahedron, 2009, 65, 4855-4858.	1.9	5
596	Arylsubstituted 3H-azepines and 4,5-dihydro-3H-azepines from propargylbenzene and isothiocyanates. Russian Journal of General Chemistry, 2009, 79, 1041-1044.	0.8	5
597	Reaction of secondary phosphine chalcogenides with 2,2,2-trichloroacetaldehyde. Russian Journal of General Chemistry, 2009, 79, 2102-2107.	0.8	5
598	New catalyst for the synthesis of 2-Phenyl-1,2,3-triazole. Russian Journal of Organic Chemistry, 2009, 45, 1683-1685.	0.8	5
599	Chlorination of secondary phosphine selenides with the system CCl4/NEt3. Russian Journal of General Chemistry, 2010, 80, 1043-1044.	0.8	5
600	Reaction of secondary phosphine selenides with elemental selenium: Synthesis of bis(diorganoselenophosphoryl)selenides. Russian Journal of General Chemistry, 2010, 80, 2063-2064.	0.8	5
601	Nucleophilic addition of acetophenone to 1,4-diethynylbenzene. Russian Journal of Organic Chemistry, 2010, 46, 1414-1415.	0.8	5
602	Chemoâ€, Regio―and Stereospecific Synthesis of Unnatural, Fluorescent Amino Acids by Condensation of <scp>L</scp> â€Lysine and 1â€Vinylpyrroleâ€2â€carbaldehydes. European Journal of Organic Chemistry, 2010, 2010, 4554-4558.	2.4	5
603	Interaction of methanol, methanthiol, and acetoxime with potassium and rubidium hydroxides in dimethyl sulfoxide. Journal of Structural Chemistry, 2011, 52, 659-663.	1.0	5
604	Antimicrobial activity of silver—poly(1-vinyl-1,2,4-triazole) nanocomposites. Russian Chemical Bulletin, 2011, 60, 671-675.	1.5	5
605	First example of the \$\$ C_{sp^2 } \$\$ -P bond formation in the reaction of red phosphorus with hetaryl halides. Russian Journal of General Chemistry, 2012, 82, 1307-1308.	0.8	5
606	Cationic and free radical polymerization of N-vinyl-2,3-diphenylpyrrole. Synthetic Metals, 2012, 162, 662-669.	3.9	5
607	Consecutive Reactions of Dialkyl Ethynyl Carbinols with Acetylene in Superbase KOH/DMSO Suspension. Mendeleev Communications, 2012, 22, 132-133.	1.6	5
608	One-pot synthesis of 1-ethynylcyclohexyl vinyl ether from cyclohexanone and acetylene. Russian Journal of Organic Chemistry, 2012, 48, 858-859.	0.8	5
609	Mass spectrometry and quantum chemical studies of the reaction of divinyl telluride with secondary phosphine sulfides: Synthesis of adducts. Journal of Organometallic Chemistry, 2013, 745-746, 126-132.	1.8	5
610	Superbaseâ€Catalyzed [4+2] Cycloaddition of Acetylenes to 3,6â€Di(pyrrolâ€2â€yl)â€1,2,4,5â€ŧetrazine: A F Synthesis of 3,6â€Di(pyrrolâ€2â€yl)pyridazines. Advanced Synthesis and Catalysis, 2013, 355, 1535-1539.	Facile 4.3	5
611	New reactions of alkynes with ketones in superbasic media. Russian Chemical Bulletin, 2013, 62, 2292-2300.	1.5	5
612	A New Humic Acid Preparation with Addition of Silver Nanoparticles. , 2013, , 783-788.		5

A New Humic Acid Preparation with Addition of Silver Nanoparticles. , 2013, , 783-788. 612

Boris A Trofimov

#	Article	IF	CITATIONS
613	A shortcut to tris[2-(4-hydroxyphenyl)ethyl]phosphine oxide and 2-(4-hydroxyphenyl)ethylphosphinic acid via reaction of elemental phosphorus with 4-tert-butoxystyrene. Mendeleev Communications, 2014, 24, 29-31.	1.6	5
614	Stereoselective Synthesis of N-[(Z)-2-Cyano-1-Phenylethenyl]Benzimidazole-2-Carbothioamides by a Three-Component Reaction of 1-Substituted Benzimidazoles, Phenylcyanoacetylene, and Isothiocyanates. Chemistry of Heterocyclic Compounds, 2014, 50, 807-813.	1.2	5
615	Dipole moments and conformational analysis of tris(2-pyridyl)phosphine and tris(2-pyridyl)phosphine chalcogenides. Experimental and theoretical study. Journal of Molecular Structure, 2014, 1076, 285-290.	3.6	5
616	Vinylation of trialkylamines with acyl- and cyanoacetylenes via C–N bond cleavage in the presence of water. Mendeleev Communications, 2014, 24, 209-210.	1.6	5
617	First example of direct phosphorylation of vinyl silanes with elemental phosphorus in superbasic media. Russian Journal of General Chemistry, 2015, 85, 2416-2417.	0.8	5
618	Synthesis and properties of a new family of phosphorus- and nitrogen-containing ionenes. Doklady Chemistry, 2015, 465, 286-290.	0.9	5
619	Further Developments in the Reaction of 2-Aza-1,3,5-trienes with Superbases: Competitive Formation of New 4,5-Dihydro-1,3-thiazoles, Dihydroazepines, and Azepines by Tandem Deprotonation–Cyclization. Synthesis, 2015, 47, 3593-3610.	2.3	5
620	Reaction of 2-(2,2-dicyano-1-ethylsulfanylethenyl)pyrroles with aniline: a route to 1-anilino-3-iminopyrrolizine-2-carbonitriles and 2-(1-anilino-2,2-dicyanoethenyl)pyrroles. Journal of Sulfur Chemistry, 2015, 36, 145-154.	2.0	5
621	Hydrative trimerization of acetylene into 2-vinyloxy-1,3-butadiene in the KOH/DMSO system: a quantum chemical insight. Tetrahedron Letters, 2015, 56, 1063-1066.	1.4	5
622	The reaction of 1,5,6-trimethylbenzimidazole with 1,3-diphenylprop-2-yn-1-one and water: en route to β-amino enones and benzodiazocinones. Mendeleev Communications, 2015, 25, 254-256.	1.6	5
623	Aromatization of 2,3-dihydropyridines controlled with substituents. Russian Journal of Organic Chemistry, 2015, 51, 281-283.	0.8	5
624	Synthesis of new N-phosphorylated vinylhydropyridines. Russian Journal of General Chemistry, 2015, 85, 1978-1981.	0.8	5
625	Opening of pyridine ring with benzoyl(phenyl)acetylene in the presence of water with formation of 5-aminopenta-2,4-dienal. Russian Journal of Organic Chemistry, 2015, 51, 1038-1039.	0.8	5
626	Pyrrole acetylenecarbaldehydes: an entry to a novel class of functionalized pyrroles. Tetrahedron Letters, 2016, 57, 4961-4964.	1.4	5
627	Synthesis of tris[2-(2-furyl)ethyl]phosphine its chalcogenides and Pdii complex. Mendeleev Communications, 2016, 26, 314-316.	1.6	5
628	Efficient switching from the 2,3′- to 2,2′-bipyrrole scaffold via the recyclization of 1-(benzoylmethylanilino)-3-imino-3 H -2-cyanopyrrolizines: Crucial effect of the DBU organic superbase. Tetrahedron Letters, 2017, 58, 2209-2212.	1.4	5
629	Furfuryl vinyl ethers in [4+2]-cycloaddition reactions. Russian Journal of Organic Chemistry, 2017, 53, 203-209.	0.8	5
630	Reaction of 1-bromonaphthalene with PH3 in the t-BuOK/DMSO system: PCl3-free synthesis of di(1-naphthyl)phosphine and its oxide. Tetrahedron, 2017, 73, 4723-4729.	1.9	5

Boris A Trofimov

#	Article	IF	CITATIONS
631	2-Aminopyrimidines in just two steps from ketones, acetylenes and guanidine via Î ² ,Î ³ enones. Mendeleev Communications, 2017, 27, 283-284.	1.6	5
632	Synthesis and luminescent properties of water-soluble nanobiocomposite CdSe/polysaccharide quantum dots. Russian Chemical Bulletin, 2017, 66, 2321-2326.	1.5	5
633	Dioximes of 1,6-heptanediones from acetylene and ketones: only three atom-economic steps. Mendeleev Communications, 2018, 28, 143-144.	1.6	5
634	Synthesis of 2,2-di(pyrazol-1-yl)enones via the 2:1 coupling of pyrazoles and acylbromoacetylenes in solid alumina. Tetrahedron Letters, 2018, 59, 4231-4235.	1.4	5
635	Three-Component Reaction of 4-Methylpyridine with Alkyl Propiolates and Secondary Phosphine Chalcogenides. Russian Journal of General Chemistry, 2018, 88, 912-918.	0.8	5
636	Exploring Acetylene Chemistry: A Transition Metal-Free Route to Dienyl 6,8-Dioxabicyclo[3.2.1]octanes from Ketones and Acetylenes. Journal of Organic Chemistry, 2018, 83, 10272-10280.	3.2	5
637	tert-Butoxide-Assisted Structural Transformation of 2-Aza-1,3,5-trienes: Fast Track to 5-Ethynyl-2-vinyl- and 2,5-Divinyl-1,3-thiazoles. Synthesis, 2018, 50, 4313-4324.	2.3	5
638	Synthesis of 1-Carboxamide-1,4-dihydropyridazines via RecycliÂzation of Hydroxypyrrolines with Semicarbazides. Synthesis, 2018, 50, 4982-4988.	2.3	5
639	Selenium Nanocomposites Having Polysaccharid Matrices Stimulate Growth of Potato Plants in Vitro Infected with Ring Rot Pathogen. Doklady Biological Sciences, 2019, 489, 184-188.	0.6	5
640	Quantum chemical comparison of ethynylation and C-vinylation routes in superbase catalyzed reaction of acetylenes with imines. Mendeleev Communications, 2019, 29, 622-624.	1.6	5
641	Catalyst-free addition of secondary phosphine chalcogenides to pyrazolecarbaldehydes. Mendeleev Communications, 2019, 29, 683-685.	1.6	5
642	Synthesis of N-(Z)-acylethenyl-6-hydroxydihydrophenanthridines via the stereoselective functionalization of phenanthridine with acylacetylenes and water. Tetrahedron Letters, 2020, 61, 151553.	1.4	5
643	Catalyst- and Solvent-Free Synthesis of α-Amino Polyfluoroalkylphosphonates from Bis(fluoroalkyl) Phosphonates and Aldimines. Synthesis, 2020, 52, 1531-1540.	2.3	5
644	Pyrrole–Aminopyrimidine Ensembles: Cycloaddition of Guanidine to Acylethynylpyrroles. Molecules, 2021, 26, 1692.	3.8	5
645	Cyanoacetylenic Alcohols: Molecules of Interstellar Relevance in the Synthesis of Essential Heterocycles, Amino Acids, Nucleobases and Nucleosides. Synthesis, 2021, 53, 2740-2766.	2.3	5
646	Fluorescence from 3,5-diphenyl-8-CF3-BODIPYs with amino substituents on the phenyl rings: Quenching by aromatic molecules. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 254, 119632.	3.9	5
647	An approach to the synthesis of 5-[1-(1-pyrrolyl)ethyl]-1-vinylpyrroles. Arkivoc, 2005, 2001, 24-30.	0.5	5
648	Reaction of acetophenone and benzylphenylketone oximes with phenylacetylene: synthesis of di- and triphenylpyrroles. Arkivoc, 2009, 2009, 14-20.	0.5	5

#	Article	IF	CITATIONS
649	A mechanistic insight into the chemoselectivity of the reaction between 3-phenyl-2-propynenitrile, secondary phosphine oxides and pyridinoids. Mendeleev Communications, 2021, 31, 670-672.	1.6	5
650	Pyrroles from ketoximes and acetylene 8. Synthesis of 4,5,6,7-tetrahydroindole and its 1-vinyl derivative. Chemistry of Heterocyclic Compounds, 1979, 15, 163-166.	1.2	4
651	Synthesis of tristyrylphosphine from red phosphorus and phenylacetylene in a superbase system. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 1284-1284.	0.0	4
652	3-H-pyrrolizin-3-ones. Chemistry of Heterocyclic Compounds, 1996, 32, 783-788.	1.2	4
653	Sulfurization of polymers. Russian Chemical Bulletin, 1999, 48, 459-462.	1.5	4
654	REARRANGEMENT IN THE ACETYLENIC NUCLEOPHILIC SUBSTITUTION WITH THE <i>O</i> -ALKYL CARBONODITHIOATE ANIONS. Phosphorus, Sulfur and Silicon and the Related Elements, 2000, 158, 81-89.	1.6	4
655	Cyanoacetylene and Its Derivatives: XXVII. 5,5-Dialkyl-4-azido-2,5-dihydrofuran-2-imine. Russian Journal of Organic Chemistry, 2001, 37, 700-703.	0.8	4
656	Poly(methylene diselenide) and poly(methylene seleno-polysulfido-selenides), -[-CH2Se2-] n -, -[-CH2SeS m Se-] n Sulfur Letters, 2002, 25, 229-234.	0.3	4
657	Title is missing!. Russian Chemical Bulletin, 2002, 51, 282-289.	1.5	4
658	Unusual Thermal Rearrangements of N-Cyclohexylidene-4-methyl-1-(methylthio)penta-1,3-dien-1-amine. Chemistry of Heterocyclic Compounds, 2002, 38, 1230-1232.	1.2	4
659	1H and 13C NMR Study of Steric and Electronic Structure of 2-(2-Acylethenyl)-1-vinylpyrroles. Russian Journal of Organic Chemistry, 2002, 38, 1775-1781.	0.8	4
660	Title is missing!. Russian Journal of Organic Chemistry, 2003, 39, 585-588.	0.8	4
661	Gas-Phase Vinylation of N-Methylacetamide. Russian Journal of General Chemistry, 2003, 73, 940-946.	0.8	4
662	Unexpected 1:2 Annelation of 4,5,6,7-Tetrahydroindole with 1-Benzoyl-2-phenylacetylene. Chemistry of Heterocyclic Compounds, 2003, 39, 1115-1116.	1.2	4
663	First Example of Pyrrols C-Vinylation by an Activated Acetylene Under Catalysis with Bases. Russian Journal of Organic Chemistry, 2003, 39, 1195-1196.	0.8	4
664	Reaction of pyrrole-2-carbodithioates with CH-acids: Stereospecific synthesis of new functional 2-vinylpyrroles. Sulfur Letters, 2003, 26, 95-100.	0.3	4
665	Synthesis of Tertiary Bisphosphine Oxides from Methylacetylene and Secondary Phosphine Oxides. Russian Journal of Organic Chemistry, 2004, 40, 129-130.	0.8	4
666	Noncatalytic hydrophosphorylation and hydrothiophosphorylation of hydroxyaldehydes. Russian Journal of General Chemistry, 2006, 76, 98-102.	0.8	4

#	Article	IF	CITATIONS
667	Chemoselective reaction of red phosphorus with 4-vinylbenzyl chloride: A convenient route to tris(4-vinylbenzyl)phosphine oxide. Russian Journal of General Chemistry, 2006, 76, 325-326.	0.8	4
668	Reactions of elemental phosphorus and phosphine with electrophiles in superbasic systems: XVIII. Phosphorylation of 1-(chloromethyl)naphthalene with the elemental phosphorus. Russian Journal of General Chemistry, 2006, 76, 708-713.	0.8	4
669	Crystal and molecular structures of the complexes of cobalt dichloride with 1-isopropenylimidazole and 1-vinylimidazole. Russian Journal of General Chemistry, 2006, 76, 791-797.	0.8	4
670	Nucleophilic addition of secondary phosphine sulfides to divinyl sulfoxide and divinyl sulfone. Russian Journal of General Chemistry, 2006, 76, 1201-1204.	0.8	4
671	Reaction of Pyridine with Phenylcyanoacetylene: A New Route to Functionalized Polyconjugated 1,4-Dihydropyridine Systems. European Journal of Organic Chemistry, 2006, 2006, 1581-1585.	2.4	4
672	Microwave activation of base-catalyzed reactions of divinyl sulfoxide with water. Doklady Chemistry, 2007, 412, 5-6.	0.9	4
673	Cationic oligomerization and co-oligomerization of cholesteryl vinyl ether. Doklady Chemistry, 2007, 414, 148-151.	0.9	4
674	Comparison of the electronic and steric structures of 1-vinyl-and 1-(prop-1-en-1-yl)pyrroles according to the 1H and 13C NMR data. Russian Journal of Organic Chemistry, 2007, 43, 397-405.	0.8	4
675	Ab initio quantum-chemical study of the reaction mechanisms of acetylene in superbasic media. Noncatalytic vinylation of methanol. Journal of Structural Chemistry, 2007, 48, S94-S99.	1.0	4
676	A first example of the C(2)-vinylation of 1-alkylimidazoles. Russian Chemical Bulletin, 2008, 57, 2233-2234.	1.5	4
677	Synthesis of metal complexes with 2-[bis(2-phenylethyl)-thiophophorylhydroxymethyl]-1-organilimidazoles. Crystal structure of ZnCl2 · 2L. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2008, 34, 480-492.	1.0	4
678	Reaction of vinyl sulfoxides with sodium sulfide and polysulfides. Russian Journal of General Chemistry, 2008, 78, 933-938.	0.8	4
679	First example of alkylation of secondary phosphine selenides. Russian Journal of General Chemistry, 2008, 78, 1628-1630.	0.8	4
680	Polymerization of 1,4-bis[2-(N-vinyl)pyrrolyl]benzene. Polymer Science - Series B, 2010, 52, 193-197.	0.8	4
681	Reaction of phosphine with allylbenzene in the KOH–DMSO system: regioselective synthesis of (1-phenylprop-2-yl)phosphine and bis(1-phenylprop-2-yl)phosphine. Mendeleev Communications, 2010, 20, 275-276.	1.6	4
682	Structure and properties of bis{[2-(4-tert-butyl)phen]ethyl}phosphine sulfide. Journal of Structural Chemistry, 2010, 51, 120-125.	1.0	4
683	Selective synthesis and radical polymerization of N-vinyl-2-(1-naphthyl)-and N-vinyl-2-(2-naphthyl)pyrroles. Doklady Chemistry, 2010, 434, 219-222.	0.9	4
684	Chemo- and Regiospecific Modification of d,l-Tryptophan by Reaction with α,β-Acetylenic γ-Hydroxy Nitriles. Synthesis, 2010, 2010, 3174-3178.	2.3	4

Boris A Trofimov

#	Article	IF	CITATIONS
685	Reaction of 2-aza-1,3,5-trienes with superbases: an unexpected approach towards exomethylene tetrahydroazepines. Russian Chemical Bulletin, 2011, 60, 2617-2620.	1.5	4
686	Methanol interaction with potassium and rubidium hydroxides in dimethyl sulfoxide. Journal of Structural Chemistry, 2011, 52, 652-658.	1.0	4
687	Synthesis of tris(organylthioethyl)phosphines and their derivatives on the basis of the reaction of phosphine with vinyl sulfides. Russian Journal of General Chemistry, 2011, 81, 470-473.	0.8	4
688	New synthesis of diselenophosphinates of heavy metals. Russian Journal of General Chemistry, 2011, 81, 1449-1452.	0.8	4
689	The reaction of 2-arylazo-1-vinylpyrroles with trifluoroacetic anhydride: unexpected formation of N-aryl-2,2,2-trifluoroacetamides and conjugated polymers. Mendeleev Communications, 2011, 21, 36-37.	1.6	4
690	Structural Reorganization of Allyl Isothiocyanate into Pyrrole Ring under SuperbaseÂ: A Straightforward Access to NH-2-(Alkylsulfanyl)-1H-pyrroles and N-Alkyl-2-(alkylsulfanyl)-1H-pyrroles. Synthesis, 2012, 45, 93-100.	2.3	4
691	Synthesis of chalcophosphinic acid amides with pyridine rings*. Chemistry of Heterocyclic Compounds, 2012, 47, 1384-1389.	1.2	4
692	A quantum chemical study of the mechanism of the regioselective domino-reaction of O-vinyl-2-tetralone oxime. Journal of Structural Chemistry, 2013, 54, 17-25.	1.0	4
693	First example of the synthesis of pyrrolecarbaldehyde with electron-deficient acetylene substituents. Russian Journal of Organic Chemistry, 2013, 49, 1241-1243.	0.8	4
694	Cross-coupling between secondary phosphine selenides and primary or secondary amines: halogen-free synthesis of phosphinoselenoic amides. Mendeleev Communications, 2013, 23, 253-254.	1.6	4
695	Quantum-chemical study of regioselectivity and stereoselectivity of methanol vinylation with substituted acetylenes in a KOH/DMSO superbasic medium. Doklady Chemistry, 2013, 452, 227-229.	0.9	4
696	2-(2-Ethynyl-1-aziranyl)-3,4-dihydro-2H-pyrrole: a one-pot assembly from isopropyl phenyl ketoxime and acetylene during the synthesis of 3H-pyrrole. Mendeleev Communications, 2014, 24, 368-369.	1.6	4
697	Unexpected formation of methylsulfanylmethyl phenyl ether at vinylation of phenol with acetylene in the K2CO3-DMSO system. Russian Journal of Organic Chemistry, 2014, 50, 1199-1200.	0.8	4
698	A simple route to dithiophosphinic esters and diesters from secondary phosphine sulfides and thiols or dithiols. Journal of Sulfur Chemistry, 2014, 35, 237-247.	2.0	4
699	Microwave synthesis of secondary phosphines and phosphine oxides from red phosphorus and allyl(methoxy)benzenes in KOH-DMSO. Russian Journal of Organic Chemistry, 2014, 50, 1438-1442.	0.8	4
700	Quantum-chemical study of the stereoselectivity of methanethiol nucleophilic addition to substituted acetylenes in KOH/DMSO superbasic medium. Doklady Chemistry, 2014, 456, 91-93.	0.9	4
701	Quantum chemical study of mechanisms of organic reactions. Russian Chemical Bulletin, 2015, 64, 511-517.	1.5	4
702	Electrophilic addition of thioselenophosphinic acids to vinyl sulfides and selenides. Journal of Sulfur Chemistry, 2015, 36, 216-226.	2.0	4

#	Article	IF	CITATIONS
703	Domino assembly of functionalized cyclopentenols from 1,5-diphenylpentane-1,5-dione and phenylacetylene in the KOH/DMSO suspension. Mendeleev Communications, 2015, 25, 17-18.	1.6	4
704	First synthesis of pyrrolylpyridines from alkynes and isothiocyanates. Russian Journal of Organic Chemistry, 2015, 51, 132-135.	0.8	4
705	Base-catalyzed addition of ketones to alkynes as a springboard to cycloalka[c]pyrazoline-2-carbaldehydes. Chemistry of Heterocyclic Compounds, 2015, 51, 242-245.	1.2	4
706	Regioselective Addition of Dithiophosphinic Acids to Vinyl Sulfides and Selenides: An Efficient Route Toward Functional Dithiophosphinates. Heteroatom Chemistry, 2015, 26, 72-78.	0.7	4
707	Steric control of regiodirectivity of reductive N-vinylation–C-phosphorylation of pyridines with the system alkyl propiolate–secondary phosphine oxide. Russian Journal of General Chemistry, 2016, 86, 731-734.	0.8	4
708	Base-catalyzed cascade dimerization of γ-aryl-β,γ-enones into acylated terphenyls. Mendeleev Communications, 2016, 26, 378-379.	1.6	4
709	Four-Component Reaction between Secondary Phosphines, Primary Amines, Aldehydes, and Chalcogens: A Facile Access to Functionalized α-Aminophosphine Chalcogenides. Synthesis, 2017, 49, 677-684.	2.3	4
710	Regioselective N(2)-H-functionalization of thiosemicarbazones of aromatic and heteroaromatic aldehydes with acrylonitrile. Synthetic Communications, 2017, 47, 159-168.	2.1	4
711	Pharmacological Correction of Hypoxic Conditions by Complexes of Zinc with N-Alkenylimidazoles. BioNanoScience, 2017, 7, 338-339.	3.5	4
712	Cycloadducts of methyl hydroxyalkynoates and DBU: Transformation into tethered furan-2(5H)-one and caprolactam structures. Russian Journal of Organic Chemistry, 2017, 53, 1893-1895.	0.8	4
713	Acetylene as driving and organizing molecule in the assembling reactions with chalcones in the NaOBu t /DMSO superbase system. Mendeleev Communications, 2018, 28, 47-48.	1.6	4
714	Regio- and stereoselective reaction of 3-fluoropyridine, electron-deficient alkynes and bis(fluoroalkyl) phosphites: Catalyst- and solvent-free synthesis of polyfluoroalkylphosphonylated 3-fluoro-1,2-dihydropyridines. Journal of Fluorine Chemistry, 2018, 210, 137-141.	1.7	4
715	Synthesis of Water-Soluble Silver Selenide Quantum Dots Luminescing within the Transparency Window of Biological Tissues. Russian Journal of General Chemistry, 2018, 88, 284-287.	0.8	4
716	One-Pot Chlorine-Free Synthesis of Chiral Organophosphorus Compounds from Elemental Phosphorus and α-Methylstyrene Dimer. Doklady Chemistry, 2018, 478, 5-8.	0.9	4
717	Noncatalytic Annulation of 4-Hydroxy-4-methylpent-2-ynenitrile to 3,3-Dimethyl-2-phenyl-3H-pyrrole. Stereoselective Synthesis of (Z)-2-(2,2,7,7-Tetramethyl-7a-phenyl-7,7a-dihydropyrrolo-) Tj ETQq1 1 0.784314 rgI	3T /Qs erloc	k 40 Tf 50 1
718	2-(5-Arylterphenyl-4-yl)quinolines from 2-methylquinoline and 1-(het)aryl-3-phenylprop-2-yn-1-ones in just a one step: A miracle of molecular interplay. Mendeleev Communications, 2018, 28, 267-269.	1.6	4
719	Unfolding the frontalin chemistry: a facile selective hydrogenation of 7-methylidene-6,8-dioxabicyclo[3.2.1]octanes, 2:2 ensembles of ketones and acetylene. Mendeleev Communications, 2018, 28, 513-514.	1.6	4
720	Synthesis and Spectral Characterization of New Biodegradable Arabinogalactan Derivatives for Diagnosis and Therapy. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 343-349.	0.6	4

#	Article	IF	CITATIONS
721	Retrosynthetic Analysis of α-Alkenyl-β-Diketones: Regio- and Stereoselective Two-Step Synthesis of Highly Arylated Representatives from Acetylenes, Ketones, and Acyl Chlorides. Journal of Organic Chemistry, 2020, 85, 8429-8436.	3.2	4
722	Oxidative cross-coupling of secondary phosphine chalcogenides with amino alcohols and aminophenols: aspects of the reaction chemoselectivity. Organic and Biomolecular Chemistry, 2021, 19, 5098-5107.	2.8	4
723	Hydrazides in the reaction with hydroxypyrrolines: less nucleophilicity – more diversity. Beilstein Journal of Organic Chemistry, 2021, 17, 319-324.	2.2	4
724	Synthesis of Longâ€Chain <i>n</i> â€Alkylphosphonic Acids by Phosphonylation of Alkyl Bromides with Red Phosphorus and Superbase under Micellar/Phase Transfer Catalysis. European Journal of Organic Chemistry, 2021, 2021, 1596-1602.	2.4	4
725	Uniquely functionalized tetrahydropyrido[2,1-b][1,3]oxazines: Diastereoselective 1:2 assembly from pyridines with oxalylacetylenes. Tetrahedron Letters, 2021, 84, 153431.	1.4	4
726	Oxalylacetylenes as Dielectrophiles for Annulation of Quinoline Rings: Synthesis of Highly Functionalized 1,3-Oxazinoquinolines. Synthesis, 2022, 54, 1833-1842.	2.3	4
727	Sulfurization of Polymers: a Novel Access to Electroactive and Conducting Materials. Sulfur Reports, 2003, 24, 283-305.	0.4	4
728	First example of autooxidation of methyl and cyclohexano groups attached to the pyrrole ring: stabilization effect of phenyldiazenyl substituents. Arkivoc, 2010, 2010, 352-359.	0.5	4
729	Peculiarities of the tandem reaction between cyanoacetylenic alcohols and aminobenzoic acids: Synthesis of 5,5-dialkyl-2-(3-aminophenyl)-4-oxo-4,5-dihydrofuran-3-carbonitriles. Arkivoc, 2013, 2012, 319-325.	O.5	4
730	Expedient nonclassical reaction of acetylenes with ketones: controlling the switch between bicyclic ketals and cyclopentenols formation. Arkivoc, 2015, 2015, 145-157.	0.5	4
731	Growth-Stimulating Activity of Natural Polymer-Based Nanocomposites of Selenium during the Germination of Cultivated Plant Seeds. Doklady Biochemistry and Biophysics, 2020, 495, 296-299.	0.9	4
732	Pyrroles from ketoximes and acetylene. 24. Acidic hydrolysis of 1-vinylpyrroles. Chemistry of Heterocyclic Compounds, 1982, 18, 1257-1265.	1.2	3
733	Pyrroles from ketoximes and acetylene. 22. Dihaloethanes in place of acetylene in reactions with cyclohexanone oxime. Chemistry of Heterocyclic Compounds, 1982, 18, 920-923.	1.2	3
734	4H-2-hydroxy-2,3-dihydropyrroles ? Intermediates in the formation of pyrroles from ketoximes and acetylene in the KOH-DMSO system. Chemistry of Heterocyclic Compounds, 1983, 19, 231-231.	1.2	3
735	Thermal transformations of divinyl sulfone in the gas phase. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1983, 32, 844-846.	0.0	3
736	Synthesis and biological activity of organylthioselenides. Pharmaceutical Chemistry Journal, 1984, 18, 11-13.	0.8	3
737	Pyrroles from ketoximes and acetylene. No. 36. 4,4,6,6-Tetramethyl-4,5,6,7-tetrahydro-5-azaindole, its nitroxyl and vinyl derivatives, and spin-labelled copolymer. Chemistry of Heterocyclic Compounds, 1988, 24, 285-289.	1.2	3
738	Synthesis of pyrroles from heterocyclic compounds (review). Chemistry of Heterocyclic Compounds, 1989, 25, 237-253.	1.2	3

#	Article	IF	CITATIONS
739	Cycloalka[b]pyrroles from ketoximes and acetylene: Synthesis and kinetic investigation. Bulletin of the USSR Division of Chemical Science, 1990, 39, 773-776.	0.0	3
740	Stereochemical aspects of pyrrole formation from substituted piperidin-4-one oximes and acetylene. Chemistry of Heterocyclic Compounds, 1991, 27, 1095-1100.	1.2	3
741	Formation of free radicals in the vinylation of 2-substituted pyrroles with acetylenes in a KOH-DMSO system. Chemistry of Heterocyclic Compounds, 1992, 28, 884-889.	1.2	3
742	A novel method for synthesizing diorganylphosphinous acids from red phosphorus and arylalkenes. Russian Chemical Bulletin, 1994, 43, 1591-1592.	1.5	3
743	A new method for the synthesis of diorganylvinylphosphine oxides. Russian Chemical Bulletin, 1997, 46, 1799-1801.	1.5	3
744	Reactivity of primary and secondary alcohols in nucleophilic addition to a triple bond: the vinylation of butane-1,3-diol. Russian Chemical Bulletin, 1999, 48, 2347-2349.	1.5	3
745	Mass spectra of new groups of functionalized heterocycles. Russian Chemical Bulletin, 2000, 49, 1548-1551.	1.5	3
746	Reaction of (alkylthio)chloroacetylenes with thiourea. Russian Chemical Bulletin, 2000, 49, 1319-1319.	1.5	3
747	Dimerization of (Alkylthio)Chloroacetylenes Initiated By Sodium Sulfite. Phosphorus, Sulfur and Silicon and the Related Elements, 2000, 165, 191-195.	1.6	3
748	Poly(methylhydrosiloxane) Homodehydrocondensation Catalysis with Poly(ethylene Glycol) Chains. Doklady Chemistry, 2001, 377, 112-113.	0.9	3
749	Mass spectra of new groups of functionalized heterocycles. 4. 1-Alkyl-2-(alkylthio)pyrroles. Russian Chemical Bulletin, 2001, 50, 2390-2393.	1.5	3
750	Title is missing!. Russian Chemical Bulletin, 2001, 50, 764-770.	1.5	3
751	Title is missing!. Russian Journal of General Chemistry, 2001, 71, 58-60.	0.8	3
752	Title is missing!. Russian Journal of General Chemistry, 2001, 71, 234-242.	0.8	3
753	Cyanoacetylene and Its Derivatives: XXVI. Hydrohalogenation of 4-Alkyl-4-hydroxy-2-alkynenitriles. Russian Journal of Organic Chemistry, 2001, 37, 649-654.	0.8	3
754	Title is missing!. Russian Journal of Organic Chemistry, 2001, 37, 859-865.	0.8	3
755	Solvatochromism of Heteroaromatic Compounds: VIII. 2-(Tricyanovinyl)-5-phenylpyrrole. Russian Journal of General Chemistry, 2001, 71, 1701-1707.	0.8	3
756	Reaction of Tribenzylphosphine Oxide with Aldehydes. Russian Journal of Organic Chemistry, 2001, 37, 1726-1730.	0.8	3

#	Article	IF	CITATIONS
757	Title is missing!. Russian Journal of General Chemistry, 2002, 72, 1141-1141.	0.8	3
758	Efficient Synthesis of 1-(2-Propynyl)pyrrole. Russian Journal of Organic Chemistry, 2002, 38, 1073-1075.	0.8	3
759	Addition of secondary phosphines to divinyl sulfide. Sulfur Letters, 2003, 26, 63-66.	0.3	3
760	Quantum-Chemical Analysis of Coordination of Dimethylsulfoxide Molecules to Sodium and Potassium Cations. Journal of Structural Chemistry, 2004, 45, 41-46.	1.0	3
761	Synthesis of 1,2-Bis(2-phenylethenylsulfanyl)-1-phenylethene from Phenylacetylene and Sodium Disulfide. Russian Journal of General Chemistry, 2004, 74, 470-471.	0.8	3
762	Reactions of Elemental Phosphorus and Phosphine with Electrophiles in Superbasic Systems: XV. Phosphorylation of Allyl Halides with Elemental Phosphorus. Russian Journal of General Chemistry, 2004, 74, 1091-1096.	0.8	3
763	Pyrrole anion addition to carbon disulfide: An ab initio study. International Journal of Quantum Chemistry, 2004, 100, 360-366.	2.0	3
764	An expedient synthesis of methyl vinyl sulfide from dimethyl disulfide and acetylene. Journal of Sulfur Chemistry, 2004, 25, 395-399.	2.0	3
765	Complex Compounds Based on 1-Isopropenylimidazoles and -pyrazole. Russian Journal of General Chemistry, 2005, 75, 1283-1289.	0.8	3
766	Structure of the Potassium Hydroxide-Dibenzo-18-crown-6 Complex. Russian Journal of Organic Chemistry, 2005, 41, 610-616.	0.8	3
767	N-isopropenylazoles: III. Quantum-chemical analysis of the reaction of azoles with allene and propyne in the gas phase. Russian Journal of Organic Chemistry, 2006, 42, 1039-1044.	0.8	3
768	A Polysulfide Based on Bis(thien-2-yl)sulfide: Synthesis and Testing as an Active Cathode Material. Phosphorus, Sulfur and Silicon and the Related Elements, 2006, 181, 1241-1247.	1.6	3
769	Reactions of elemental phosphorus and phosphine with electrophiles in superbasic systems: XX. Phosphorylation of 4-vinylbenzyl chloride with elemental phosphorus. Russian Journal of General Chemistry, 2007, 77, 1880-1886.	0.8	3
770	Copolymerization of N,N-diallyl-N,N-dimethylammonium chloride with ethylene glycol vinyl ether in aqueous medium. Polymer Science - Series B, 2007, 49, 80-84.	0.8	3
771	Synthesis and modification of 1-vinylpyrrole-2-carbaldehyde polymers. Russian Chemical Bulletin, 2007, 56, 2209-2213.	1.5	3
772	Chemo-, regio- and stereospecific non-catalytic addition of isonicotinic acid to, -acetylenic -hydroxy nitriles. Mendeleev Communications, 2008, 18, 278-280.	1.6	3
773	Spectral, luminescent, and photophysical properties of dipyrrolylbenzenes. Russian Chemical Bulletin, 2008, 57, 1461-1466.	1.5	3
774	Synthesis and conformational analysis of furfuryl vinyl ethers. Russian Chemical Bulletin, 2008, 57, 2132-2138.	1.5	3

#	Article	IF	CITATIONS
775	Redox reaction of red phosphorus with hydrosulfide anions in DMSO. Russian Journal of General Chemistry, 2008, 78, 1816-1818.	0.8	3
776	Incomparably easy migration of functionalized enol substituent in pyrrole ring. Russian Journal of Organic Chemistry, 2008, 44, 237-246.	0.8	3
777	Formation of 5-phenyl-1-vinyl-1H-pyrrole-2-carbonitrile in the vinylation of 5-phenyl-1-vinyl-1H-pyrrole-2-carbaldehyde oxime with acetylene. Russian Journal of Organic Chemistry, 2008, 44, 1395-1396.	0.8	3
778	First synthesis of 2-aminothiophen-3-ols. Russian Journal of Organic Chemistry, 2009, 45, 626-628.	0.8	3
779	Reaction of secondary phosphines with elemental sulfur and hydrazine: atom-economic synthesis of dithiophosphinates. Russian Journal of General Chemistry, 2010, 80, 1886-1888.	0.8	3
780	An ab initio quantum chemical study of reaction mechanisms in the C2H2/CH3OH/KOH/DMSO system. Journal of Structural Chemistry, 2010, 51, 428-436.	1.0	3
781	Synthesis of 1-methyl-2-phenyl- and bis(1-methyl-2-phenylethyl)phosphinic acids from red phosphorus and allylbenzene. Russian Journal of General Chemistry, 2011, 81, 142-144.	0.8	3
782	Synthesis of cross-linked polyethylene oxide-acetal macrocycles for solid superbase catalysts. Journal of Applied Polymer Science, 2011, 120, 3363-3369.	2.6	3
783	Oxidative Transition-Metal-Free Cross-Coupling of Secondary Phosphine Chalcogenides and Alcohols or Phenols: A Facile, Expedient Synthesis of Phosphinochalcogenoic O-Esters. Synthesis, 2011, 2011, 3723-3729.	2.3	3
784	Synthesis of 1-Vinylpyrrole-imidazole Alkaloids. Synthesis, 2011, 2011, 2843-2847.	2.3	3
785	Features of the base-catalyzed reaction of 1-vinyl-4,5-dihydro-1H-benzo[g]indole-2-carbaldehyde with phenylacetylene. Chemistry of Heterocyclic Compounds, 2012, 48, 822-824.	1.2	3
786	Signs of formation and chemical evolution of zwitterions in the reaction of 1-methylimidazole with cyanophenylacetylene and benzaldehyde. Chemistry of Heterocyclic Compounds, 2012, 47, 1390-1394.	1.2	3
787	One-pot atom-economic synthesis of Se-[alkyl(aryl)sulfanylethyl]diselenophosphinates from vinyl sulfides, secondary phosphines and elemental selenium. Journal of Sulfur Chemistry, 2013, 34, 474-479.	2.0	3
788	Radical addition of secondary phosphine chalcogenides to allylamine: Atom-economic synthesis of aminopropylphosphine chalcogenides. Russian Journal of General Chemistry, 2013, 83, 1895-1899.	0.8	3
789	Reaction of Cytidine with Cyanopropargylic Alcohols: Synthesis of Functionalized Cytidine Cyclic Ketals. Synthesis, 2013, 45, 3263-3268.	2.3	3
790	Acetylene phosphorylation with elemental phosphorus in the KOH-DMSO system. Russian Journal of General Chemistry, 2014, 84, 2401-2404.	0.8	3
791	One-pot stereoselective tandem assembly of functionalized furan-3(2H)-one from γ-hydroxyalk-2-ynenitriles and 3-hydroxybenzoic acid. Russian Journal of Organic Chemistry, 2014, 50, 1617-1620.	0.8	3
792	Modification of guanosine with cyanopropargylic alcohols. Tetrahedron Letters, 2014, 55, 5426-5429.	1.4	3

#	Article	IF	CITATIONS
793	Electrical conductivity of copolymers of 1-vinyl-1,2,4-triazole with N-vinyl-4,5,6,7-tetrahydroindole. Russian Chemical Bulletin, 2015, 64, 2141-2144.	1.5	3
794	An Expedient Access to γâ€Ketophosphine Chalcogenides via the Chemo―and Regioselective Addition of Secondary Phosphine Chalcogenides to β,γâ€Ethylenic Ketones. Heteroatom Chemistry, 2015, 26, 455-462.	0.7	3
795	Expedient Strategy for the Synthesis of 5-Acylethynylpyrrole-2-carbaldehydes. Synthetic Communications, 2015, 45, 1652-1661.	2.1	3
796	P-C Bond Cleavage by Hydroxyl Function during the Addition of Tris(2-pyridyl)phosphine to Cyanopropargylic Alcohols in Water. Heteroatom Chemistry, 2015, 26, 231-235.	0.7	3
797	First example of 2,3-dihydropyridines aromatization through hemiacetal elimination. Russian Journal of Organic Chemistry, 2015, 51, 740-743.	0.8	3
798	Chlorination of secondary phosphine chalcogenides with carbon tetrachloride in the absence of bases. Russian Journal of General Chemistry, 2015, 85, 380-382.	0.8	3
799	A short-cut to 2,7-dihydrothiopyrano[2,3- <i>b</i>]pyrrole. Journal of Sulfur Chemistry, 2015, 36, 630-636.	2.0	3
800	Environmentally benign (Green) synthesis of Cobazole, an efficient erythropoiesis-stimulating agent. Doklady Chemistry, 2016, 471, 360-361.	0.9	3
801	Reaction of aryl(diarylphosphoryl)methanols with alkyl propiolates. Regio- and stereoselective synthesis of functional vinyl ethers. Russian Journal of Organic Chemistry, 2016, 52, 772-776.	0.8	3
802	Reaction of 9-bromoanthracene with red phosphorus in the system KOH‒DMSO. Russian Journal of Organic Chemistry, 2016, 52, 1059-1061.	0.8	3
803	First example of noncatalytic C2–H functionalization of imidazole ring with an alkoxy enone system. Russian Journal of Organic Chemistry, 2016, 52, 602-604.	0.8	3
804	Polarity and structure of derivatives of bis(2-phenylethyl)selenophosphinic acid. Pure and Applied Chemistry, 2017, 89, 393-401.	1.9	3
805	New aromatization pathway of 2,3-dihydropyridines by the action of superbase: Concurrent synthesis of 2-(methylsulfanyl)-6-[(vinyloxy)methyl]pyridine and 3-methoxy-6-methyl-2-(methylsulfanyl)pyridine. Russian Journal of Organic Chemistry, 2017, 53, 134-136.	0.8	3
806	Phosphorus halide free synthesis of 1,2,3,4-tetrahydroisophosphinoline 2-oxides. Mendeleev Communications, 2018, 28, 29-30.	1.6	3
807	Hydrophosphorylation of vinyl sulfides with elemental phosphorus in the KOH/DMSO(H2O) system: synthesis of 2-alkyl(aryl)thioethylphosphinic acids. Journal of Sulfur Chemistry, 2018, 39, 112-118.	2.0	3
808	Silver-Containing Humic Substance-Based Nanocomposites—Agents for Healing of Potatoes from the Ring Rot. Doklady Biological Sciences, 2018, 483, 239-242.	0.6	3
809	Transition metal-free regioselective access to 9,10-dihydroanthracenes via the reaction of anthracenes with elemental phosphorus in the KOH/DMSO system. Tetrahedron Letters, 2018, 59, 4533-4536.	1.4	3
810	Transformations of 2-[(Methoxy-2-oxoethyl)sulfanyl]-5,6-dihydropyridine under Acid Catalysis: Unexpected Transition to Derivatives of 5,6-Dihydropyridin-2(1H)-one and 2,3,6,7-Tetrahydro-5H-[1,3]thiazolo[3,2-a]pyridine. Russian Journal of Organic Chemistry, 2018, 54, 691-695.	0.8	3

#	Article	IF	CITATIONS
811	Synthesis and Isomer Composition of 2-Polyfluoroalkoxy-1,3,2-dioxaphospholanes and -phosphinanes. Russian Journal of General Chemistry, 2018, 88, 705-712.	0.8	3
812	Copper(I) halide-promoted formation of 3-acyl-5-halopyridine moiety from NH-2-(2-acylethynyl)pyrroles and propargylamine. Mendeleev Communications, 2019, 29, 252-253.	1.6	3
813	Polyfluoroalkyl Phosphates Bearing Propargyl Substituents. Russian Journal of General Chemistry, 2019, 89, 708-712.	0.8	3
814	Unexpected Reaction of Secondary Phosphine Chalcogenides with Acridine. Russian Journal of General Chemistry, 2019, 89, 543-545.	0.8	3
815	Diastereoselective synthesis of 5-hydroxy-3-methylalkane-1,6-diones from ketones and acetylene in two atom-economic steps. Mendeleev Communications, 2019, 29, 17-18.	1.6	3
816	Acetylene based short route from 2,2,6,6-tetramethylpiperidin-4-one oxime to 2-(pyrazol-5-yl)-4,5,6,7-tetrahydropyrrolo[3,2-c]pyridines. Mendeleev Communications, 2019, 29, 658-660.	1.6	3
817	Synthesis, characterization and biological evaluation of Zn(II) and Co(II) complexes of N-allylimidazole as potential hypoxia-targeting agents. Polyhedron, 2019, 161, 126-131.	2.2	3
818	Catalyst-free regio- and chemoselective addition of secondary phosphine oxides to isoquinolines. Russian Chemical Bulletin, 2020, 69, 1102-1105.	1.5	3
819	Pd-catalyzed rearrangement of ferrocenylalkyl vinyl ethers to the related aldehydes and ketones. Tetrahedron Letters, 2020, 61, 152110.	1.4	3
820	Headâ€ŧoâ€Tail Dimerization of 4â€Fluoroacetophenone in the KOH/DMSO Superbase Suspension and Related S _N Ar Reaction. European Journal of Organic Chemistry, 2020, 2020, 3480-3485.	2.4	3
821	From Acylethynylpyrroles to Pyrrolo[1,2-a]pyrazines in One Step. Russian Journal of Organic Chemistry, 2020, 56, 225-233.	0.8	3
822	Synthesis of pyrrole-ferrocene ensembles and their rearrangement into 2-(ferrocenylmethyl)-1,2-dihydro-3H-pyrrol-3-ones. Journal of Organometallic Chemistry, 2021, 933, 121651.	1.8	3
823	Chemoselective synthesis of long-chain alkyl- <i>H</i> -phosphinic acids <i>via</i> one-pot alkylation/oxidation of red phosphorus with alkyl-PEGs as recyclable micellar catalysts. Organic and Biomolecular Chemistry, 2021, 19, 10587-10595.	2.8	3
824	Cyanoquinolines and Furo[3,4-b]quinolinones Formation via On-The-Spot 2,3-Functionalization of Quinolines with Cyanopropargylic Alcohols. Journal of Organic Chemistry, 2021, 86, 3800-3809.	3.2	3
825	A one-pot assembly of Δ2-isoxazolines from ketones, aryl acetylenes and hydroxylamine: Revisiting the mechanism in terms of quantum chemistry. Journal of Molecular Structure, 2021, 1246, 131185.	3.6	3
826	Pd-catalyzed cross-coupling of arabinogalactan propargyl ethers with 5-bromosalicylic acid. Carbohydrate Polymers, 2021, 273, 118561.	10.2	3
827	Chemoselective Vinylation of the Quinine Hydroxy Group with the System Electron-Deficient Acetylene/Diphenylphosphine Oxide: an Alternative to SHNAr Reaction. Russian Journal of Organic Chemistry, 2019, 55, 1971-1974.	0.8	3
828	δ-Keto Aminoacrylonitriles and δ-Keto Aminoenones from 1-Pyrrolines, Cyanoacetylenes, and Acetylenic Ketones. Synthesis, 2022, 54, 2635-2646.	2.3	3

#	Article	IF	CITATIONS
829	Regio- and stereoselective base-catalyzed assembly of 6-methylene-5-oxaspiro[2.4]heptanones from alkynyl cyclopropyl ketones. Organic and Biomolecular Chemistry, 2022, 20, 5325-5333.	2.8	3
830	Substituted pyrrolyl-cyanopyridines on the platform of acylethynylpyrroles <i>via</i> their 1 : 2 annulation with acetonitrile under the action of lithium metal. New Journal of Chemistry, 0, , .	2.8	3
831	New synthesis of 1-vinyl-2-arylpyrroles. Chemistry of Heterocyclic Compounds, 1975, 11, 1214-1214.	1.2	2
832	One-step synthesis of 2,2?-thienylpyrroles from methyl 2-thienyl ketoxime and acetylene. Chemistry of Heterocyclic Compounds, 1977, 13, 920-920.	1.2	2
833	Vinylation of pyrroles in dimethyl sulfoxide. Chemistry of Heterocyclic Compounds, 1977, 13, 170-171.	1.2	2
834	IR spectral and dipole moment studies of the conformational isomerism of vinyl sulfides. Bulletin of the USSR Division of Chemical Science, 1977, 26, 302-306.	0.0	2
835	Hydrosilylation of diallyl and divinyl sulfides by dialkylfluorosilanes. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1977, 26, 2361-2363.	0.0	2
836	Cyanoacetylene and its derivatives 1. Synthesis of substituted cyanoacetylenes and their reaction with glycols. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1978, 27, 754-756.	0.0	2
837	Conformations and temperature variation of the dipole moments of the alkoxy- and alkylthioethenes and their heteroorganic analogs. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1979, 28, 79-85.	0.0	2
838	Pyrroles from ketoximes and acetylene. 14. Quantitative estimate of the effect of substituents on the NH acidities of pyrroles. Chemistry of Heterocyclic Compounds, 1980, 16, 488-495.	1.2	2
839	Pyrroles from ketoximes and acetylene. 11. Conformation of 1-vinylpyrroles from1H NMR data. Chemistry of Heterocyclic Compounds, 1980, 16, 241-243.	1.2	2
840	Conversion of O-vinyl alkyl aryl (hetaryl) ketoximes to pyrroles in the KOH-DMSO system. Chemistry of Heterocyclic Compounds, 1983, 19, 227-227.	1.2	2
841	Pyrroles from ketoximes and acetylene. Chemistry of Heterocyclic Compounds, 1989, 25, 39-43.	1.2	2
842	Vinylmethylsulfoxide in the Pummerer reaction. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 1919-1919.	0.0	2
843	An unexpected pathway of the reaction of lithiated 1,1-dimethylallene with isopropyl isothiocyanate. Russian Chemical Bulletin, 1997, 46, 832-833.	1.5	2
844	Unexpected transformations ofO-vinylacetophenone oxime in the system ButOK-THF. Russian Chemical Bulletin, 1997, 46, 594-596.	1.5	2
845	Ambident isothiocyanatomethanide anion for regioselective synthesis of thiazoles. Russian Chemical Bulletin, 1998, 47, 523-524.	1.5	2
846	Dipole moments and molecular conformations ofO-vinyl- andO-ethylacetoximes in solutions. Russian Chemical Bulletin, 1999, 48, 1664-1669.	1.5	2

#	Article	IF	CITATIONS
847	Multiple bond migration with participation of a protophilic agent. Russian Chemical Bulletin, 1999, 48, 653-658.	1.5	2
848	Multiple bond migration with participation of a protophilic agent. Russian Chemical Bulletin, 2000, 49, 415-420.	1.5	2
849	Hydration and protonation ofO-vinylacetoxime in the gas phase: anab initio study. Russian Chemical Bulletin, 2000, 49, 601-604.	1.5	2
850	Nucleophilic addition of 2-hydroxyquinoxaline to acetylenes. Russian Chemical Bulletin, 2000, 49, 740-743.	1.5	2
851	REACTION OF METALLATED ACETYLENES WITH PHENYLSULFINYLAMINE. Phosphorus, Sulfur and Silicon and the Related Elements, 2000, 159, 143-148.	1.6	2
852	Title is missing!. Russian Journal of General Chemistry, 2001, 71, 1903-1906.	0.8	2
853	Title is missing!. Chemistry of Heterocyclic Compounds, 2001, 37, 903-906.	1.2	2
854	A New Route to 1,2,3-Propanetrithiol. Russian Journal of General Chemistry, 2001, 71, 1771-1772.	0.8	2
855	Sulfur Versus Oxygen in Interaction with the Double Bond: AB Initio Study of Electronic Structure and Prototropic Rearrangement of 1-Methoxy-2-propene and 1-Methylthio-2-propene. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 2931-2940.	1.6	2
856	Title is missing!. Chemistry of Heterocyclic Compounds, 2002, 38, 974-980.	1.2	2
857	Synthesis of 1,2-Divinyloxypropenes from Glycerol and Acetylene in the Superbasic System CsF-NaOH-DMSO. Russian Journal of Organic Chemistry, 2003, 39, 1356-1357.	0.8	2
858	Cyclooligomerization of Acetylene with Acetonitrile to 2-Amino-3-(1-iminoethyl)-6-methylpyridine in the System KOH-CH3CN. Russian Journal of Organic Chemistry, 2003, 39, 1358-1359.	0.8	2
859	Hydrogen Bonds in 2-(Diorganylphosphorylhydroxymethyl)-1-organylimidazoles. Russian Journal of General Chemistry, 2004, 74, 540-544.	0.8	2
860	Facile Synthesis of Tris(1-naphthylmethyl)phosphine Oxide: A Route to Design of Complexing Luminophores. Russian Journal of General Chemistry, 2004, 74, 635-636.	0.8	2
861	Reaction of Activated Red Phosphorus with Allyl Bromide under Phase-Transfer Catalysis. Russian Journal of General Chemistry, 2004, 74, 1128-1129.	0.8	2
862	Functional Methacryloyloxy Acetals: V. Electrophilic Addition of Carboxylic Acids to 2-Vinyloxyethyl Methacrylate. Russian Journal of Organic Chemistry, 2004, 40, 307-310.	0.8	2
863	First example of hydro-thiophosphorylation of 3-thiolene 1,1-dioxide. Chemistry of Heterocyclic Compounds, 2004, 40, 1370-1372.	1.2	2
864	Chemo-, regio-, and stereoselective addition of secondary phosphine sulfides to î±,î²-unsaturated aldehydes. Russian Journal of General Chemistry, 2004, 74, 1625-1626.	0.8	2

#	Article	IF	CITATIONS
865	Divinyl Sulfoxide: XI. Selective Addition of Carbonodithioate Anions to Divinyl Sulfoxide in the Water-Benzene System. Russian Journal of General Chemistry, 2005, 75, 1247-1250.	0.8	2
866	Crystal and Molecular Structure of Bis(1-Vinylimidazole)diacetatozinc. Russian Journal of General Chemistry, 2005, 75, 1469-1474.	0.8	2
867	The Role of Potassium Cation in the Favorskii Ethynylation of Acetone: Effekt of Dibenzo-18-crown-6. Russian Journal of Organic Chemistry, 2005, 41, 1254-1259.	0.8	2
868	The structure of dihydropyrroloindoles: A quantum-chemical estimation of conjugation in cyclohexadiene systems. Journal of Structural Chemistry, 2006, 47, 616-621.	1.0	2
869	Crystal and molecular structures of the copper dichloride complex with 1-isopropenylimidazole. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2007, 33, 358-363.	1.0	2
870	Cholesterol vinyl ether in free-radical homo-and copolymerization reactions. Polymer Science - Series B, 2007, 49, 65-69.	0.8	2
871	Ab initio quantum-chemical study of vinylation of pyrrole and 2-phenylazopyrrole with acetylene in a KOH/DMSO system. Journal of Structural Chemistry, 2007, 48, S100-S110.	1.0	2
872	Modified copolymers of bifunctional vinyl ethers with methyl vinyl sulfide as active matrices of solid superbases. Russian Chemical Bulletin, 2008, 57, 2111-2116.	1.5	2
873	Nucleophilic addition of phosphine to vinyl sulfoxides. Russian Journal of General Chemistry, 2008, 78, 1011-1013.	0.8	2
874	Direct synthesis of a three-dimensional cross-linked tris(4-vinylbenzyl)phosphine oxide polymer from 4-vinylbenzyl chloride and red phosphorus. Doklady Chemistry, 2008, 418, 5-7.	0.9	2
875	Effect of alkali metal cations on the synthesis of 4,5,6,7-tetrahydroindole and its vinyl derivative from cyclohexanone oxime and acetylene in MOH-DMSO systems. Doklady Chemistry, 2008, 423, 273-275.	0.9	2
876	Highly effective stereoselective synthesis of vinyl ethers of 5-alkyl-2-(2-furyl)-5-hydroxymethyl-1,3-dioxanes. Chemistry of Heterocyclic Compounds, 2009, 45, 1308-1312.	1.2	2
877	Nucleophilic diaddition of secondary phosphine sulfides to acetylene and methylacetylene. Russian Chemical Bulletin, 2009, 58, 234-237.	1.5	2
878	Theoretical evaluation of some interactions in the system of acetylene-alkali metal hydroxide-DMSO. Journal of Structural Chemistry, 2009, 50, 18-26.	1.0	2
879	Ab initio quantum-chemical calculations of the energies and structures of 1,2-acetylenedithiol isomers. Journal of Structural Chemistry, 2009, 50, 195-200.	1.0	2
880	First synthesis of 5-(1-ethoxyethoxy)-N-methyl-N-phenylthiophen-2-amine and its unexpected alcoholysis. Russian Journal of Organic Chemistry, 2009, 45, 939-941.	0.8	2
881	p-Terphenyl as unexpected by-product in the synthesis of 2,5-diphenylpyrrole from acetophenone oxime and phenylacetylene. Russian Journal of Organic Chemistry, 2010, 46, 452-454.	0.8	2
882	Unexpected reaction of 2-acetylthiophene with phenaylcetylene in KOH/DMSO suspension. Chemistry of Heterocyclic Compounds, 2010, 46, 623-624.	1.2	2

#	Article	IF	CITATIONS
883	Polymerization of acetylene in aqueous PdCl2-CuCl solutions: Novel catalytically active palladium-copper-containing carbon materials. Doklady Chemistry, 2010, 431, 94-98.	0.9	2
884	Selective dehydrogenation of 4,5,6,7-tetrahydroindole to indole with a nickel sulfide catalyst. Doklady Chemistry, 2010, 434, 257-259.	0.9	2
885	Stereospecific Synthesis of (Z)-1,3-Oxazolobenzimidazoles from Imidazole- and Benzene-Ring-Substituted Benzimidazoles and α,β-Acetylenic γ-Hydroxynitriles. Synthesis, 2010, 2010, 2828-2840.	2.3	2
886	Nucleophilic addition of phosphine to 1-vinylimidazole. Russian Journal of General Chemistry, 2011, 81, 2522-2524.	0.8	2
887	New transformations of 2-Aza-1,3,5-trienes by the action of t-BuOK-THF-DMSO. Russian Journal of Organic Chemistry, 2011, 47, 141-145.	0.8	2
888	Stereoselective synthesis of N-[(1Z)-2-methoxy-1-methylsulfanylbuta-1,3-dien-1-yl]formamide. Russian Journal of Organic Chemistry, 2011, 47, 1891-1893.	0.8	2
889	A Facile Atom-Economic Synthesis of Imidazoles with Chalcogenophosphoryl Substituents via Free-Radical Addition of Secondary Phosphine Chalcogenides to 1-Vinylimidazoles. Synthesis, 2011, 2011, 1777-1782.	2.3	2
890	One-pot assembly of 3,5-bis(1H-pyrrol-2-yl)-4H-1,2,4-triazol-4-amines from pyrrolecarbo-nitriles and hydrazine. Chemistry of Heterocyclic Compounds, 2013, 49, 561-565.	1.2	2
891	Cycloaddition of primary phosphines to divinyl sulfide. Russian Journal of Organic Chemistry, 2013, 49, 12-16.	0.8	2
892	Reaction of secondary phosphine chalcogenides with diallylamine. Russian Journal of General Chemistry, 2014, 84, 1742-1747.	0.8	2
893	2,4-Diphenylpyrido[2,1-a]isoquinolinium nitrite from the domino reaction between isoquinoline, 1,3-diphenylprop-2-yn-1-one and nitromethane. Mendeleev Communications, 2014, 24, 156-158.	1.6	2
894	Polymerization of N-vinylpyrroles: Recent achievements. Polymer Science - Series B, 2014, 56, 443-463.	0.8	2
895	Preparation and properties of polyvinylenepolysulfides based on trichloroethene and sodium polysulfides. Russian Journal of General Chemistry, 2014, 84, 892-900.	0.8	2
896	Composite proton-conducting membranes based on poly(ethylene glycol vinyl glycidyl ether). Polymer Science - Series B, 2014, 56, 229-237.	0.8	2
897	C-vinylation of enolates with acetylenes in a one-pot synthesis of 4,5-dihydro-1H-pyrazole-1-carbothioamides. Russian Journal of Organic Chemistry, 2015, 51, 136-138.	0.8	2
898	First example of favorskii ethynylation of pyrrolecarbaldehydes: Synthesis of 1-(1-methyl-1H-pyrrol-2-yl)prop-2-yn-1-ol. Russian Journal of Organic Chemistry, 2015, 51, 51-53.	0.8	2
899	Non-catalyzed addition of secondary phosphine chalcogenides to divinyl chalcogenides under solvent-free conditions. Journal of Sulfur Chemistry, 2016, 37, 488-500.	2.0	2
900	Direct phosphorylation of fullerene C60 with phosphine. Doklady Chemistry, 2016, 471, 321-324.	0.9	2

#	Article	IF	CITATIONS
901	Noncatalytic addition of secondary phosphines to vinyl selenides. Russian Journal of Organic Chemistry, 2016, 52, 1511-1513.	0.8	2
902	Regio- and stereoselective modification of cytosine with cyanopropargylic alcohols. Mendeleev Communications, 2017, 27, 14-15.	1.6	2
903	Synthesis of pyrrole-dihydrothiazole ensembles from 1-allenyl-1H-pyrrole, isothiocyanates, and propargyl bromide. Russian Journal of Organic Chemistry, 2017, 53, 305-308.	0.8	2
904	Formation of 2-methyl-3,5-diphenylfuran from chalcone and acetylene in the system KOH–DMSO. Russian Journal of Organic Chemistry, 2017, 53, 470-471.	0.8	2
905	Formation of 1-aminophenazine from 3,4-dihydrophenazin-1(2H)-one oxime in the system acetylene–KOH–DMSO. Russian Journal of Organic Chemistry, 2017, 53, 150-152.	0.8	2
906	Controlled synthesis of polyfunctionalized pyrrole and thiophene from the same precursor, methyl [(buta-2,3-dienimidoyl)sulfanyl]acetate. Russian Journal of Organic Chemistry, 2017, 53, 1106-1108.	0.8	2
907	Quantum chemical modeling of superbase-catalyzed reactions of acetophenone and methyl mesityl ketone with acetylene. Russian Chemical Bulletin, 2017, 66, 2227-2233.	1.5	2
908	Influence of polysaccharide matrices of silver nanocomposites on their optical properties. Russian Chemical Bulletin, 2017, 66, 2327-2332.	1.5	2
909	Reaction of 1-(het)aryl-3-bromoprop-2-ynones with furans in solid metal oxides or salts: cross-coupling or cycloaddition?. Mendeleev Communications, 2018, 28, 20-21.	1.6	2
910	Simultaneous Double C2/C3 Functionalization of Quinoline with p-Nitrobenzoyl(phenyl)acetylene. One-Pot Synthesis of 3-(4-Nitrobenzoyl)-2-phenylquinoline. Russian Journal of Organic Chemistry, 2018, 54, 1845-1847.	0.8	2
911	First Example of the Aza-Favorskii Reaction. Ethynylation of C=N Bond in the Superbasic System t-BuOK–DMSO. Russian Journal of Organic Chemistry, 2018, 54, 1422-1424.	0.8	2
912	Chemoselective Cross-Coupling of Secondary Phosphine Chalcogenides with Aminophenols: Synthesis of Aminophenylchalcogenophosphinic Acids O-Esters. Russian Journal of General Chemistry, 2018, 88, 2223-2226.	0.8	2
913	Three-Step Synthesis of 2-Acetyl-4-methyl-3,4-dihydropyran Oximes from Acetylbenzenes and Acetylene. Russian Journal of Organic Chemistry, 2018, 54, 659-661.	0.8	2
914	Nucleophilic Addition of 1,1′-Bis(hydroxymethyl)ferrocene to Alkynes: Synthesis of Ferrocene Diethenyl Ethers. Synthesis, 2020, 52, 320-326.	2.3	2
915	NaOH(KOH)-catalyzed vinylation of cellulose with acetylene gas in water. Cellulose, 2020, 27, 9271-9283.	4.9	2
916	Free Radical Hydrophosphorylation of Fluoroalkyl Vinyl Ethers: Synthesis of Fluoroalkyl Phosphonates. Russian Journal of General Chemistry, 2020, 90, 614-618.	0.8	2
917	Cyanoacetylene-driven base catalyzed synthesis of dihydropyrimidophenanthridinones from phenanthridine and water. Mendeleev Communications, 2020, 30, 12-14.	1.6	2
918	Highly Functionalized Pyrrolylpyridines from 2-(Acylethynyl)-pyrroles. Synthesis, 2021, 53, 1137-1148.	2.3	2

#	Article	IF	CITATIONS
919	Fluorescence Quenching of 3,5-Diphenyl-8-CF3-BODIPY Luminophores Bearing Aminophenyl Substituents by Aromatic Molecules. High Energy Chemistry, 2021, 55, 179-192.	0.9	2
920	Electrochemical Aromatization of Dihydroazines: Effect of ChalcoÂgenophosphoryl (CGP) Substituents on Anodic Oxidation of 9-CGP-9,10-dihydroacridine. Synthesis, 2021, 53, 3791-3798.	2.3	2
921	Chemo- and stereoselective synthesis of E-2-(2-acyl-1-tosylvinyl)pyrroles from tosylmethyl isocyanide (TosMIC) and 2-(acylethynyl)pyrroles. Tetrahedron Letters, 2021, 84, 153432.	1.4	2
922	Bioprosthetic xenopericardium preserved with di- and penta-epoxy compounds: molecular cross-linking mechanisms, surface features and mechanical properties. Patologiya Krovoobrashcheniya I Kardiokhirurgiya, 2018, 22, 56.	0.2	2
923	Competitive Deprotonation in Vicinal O=SCH2CH2P=O Moieties. Letters in Organic Chemistry, 2006, 3, 720-722.	0.5	2
924	Reaction of polyfluoroalkyl dichlorophosphites with propargyl alcohol: synthesis and isomerization of polyfluoroalkyl di(2-propynyl) phosphites. Russian Chemical Bulletin, 2021, 70, 2195-2199.	1.5	2
925	On the anomalous behavior of thiodiglycol under conditions of the vinylation reaction. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1966, 15, 522-524.	0.0	1
926	2-alkylthiopropionaldehyde mercaptals. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1971, 20, 541-544.	0.0	1
927	Comparative estimate of p-? interaction in vinyl ethers and sulfides. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1971, 20, 1486-1487.	0.0	1
928	Stereospecific synthesis of cis-4-phosphonomethyl-1,3-dioxolanes by addition of dialkyl phosphites to divinyl ethers of gem-diols. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1974, 23, 623-628.	0.0	1
929	New pathway in the condensation of acetone oxime with acetylene. Chemistry of Heterocyclic Compounds, 1975, 11, 1216-1216.	1.2	1
930	Ultraviolet absorption spectra of vinyl sulfides. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1975, 24, 388-389.	0.0	1
931	Synthesis of 2-thiabicyclo[3.2.0]hept-3-enes by reaction of acetylene with sodium sulfide. Chemistry of Heterocyclic Compounds, 1976, 12, 745-748.	1.2	1
932	Free-radical addition of alkanethiols to 1-vinylpyrroles. Chemistry of Heterocyclic Compounds, 1977, 13, 1305-1309.	1.2	1
933	NMR spectroscopic study of coupling effects. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1977, 26, 525-527.	0.0	1
934	Reaction of N-acyl salts of heteroaromatic cations with 4,5,6,7-tetrahydroindole ? A possible pathway to 2-heterylindoles. Chemistry of Heterocyclic Compounds, 1978, 14, 127-129.	1.2	1
935	Dimerizaticn of 1-vinyl-4,5,6,7-tetrahydroindole under the influence of HCl. Chemistry of Heterocyclic Compounds, 1983, 19, 223-223.	1.2	1
936	Protonated forms of vinyl ethers. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1983, 32, 886-889.	0.0	1

#	Article	IF	CITATIONS
937	Study of conjugation effects by means of NMR spectroscopy 21. Factor analysis of NMR parameters of alkyl phenyl ethers and sulfides. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1983, 32, 953-958.	0.0	1
938	Synthesis and antisilicotic activity of copolymers of N-vinylpyrrolidone with ethylene glycol vinyl glycidyl ether. Pharmaceutical Chemistry Journal, 1984, 18, 43-46.	0.8	1
939	Alkaline catalysis of the acetalization of ethyleneglycol monovinyl ether. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1984, 33, 1532-1533.	0.0	1
940	Divinyl sulfide. Communication 12. Kinetics of the reaction of acetylene with sodium hydrosulfide in aqueous DMSO. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1985, 34, 1350-1357.	0.0	1
941	Reaction of red phosphorus with benzyl halides in a superbase system. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1989, 38, 430-430.	0.0	1
942	N-allenylation of pyrroles using 1,2,3-trichloropropane. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 1918-1918.	0.0	1
943	Correlation of the molecular orbitals of organic sulfides (selenides) and five-membered heterocyclic compounds by photoelectron spectroscopy. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 2029-2036.	0.0	1
944	NMR spectra and structures of protonated 1-vinylpyrroles. Chemistry of Heterocyclic Compounds, 1993, 29, 40-48.	1.2	1
945	3x-pyrrolizin-3-ones. Chemistry of Heterocyclic Compounds, 1996, 32, 43-47.	1.2	1
946	Multiple bond migration with participation of a protophilic agent. Russian Chemical Bulletin, 1997, 46, 1677-1682.	1.5	1
947	Synthesis ofN-allenylazoles from azoles and propargyl chloride or 1,2,3-trichloropropane in one preparative step. Russian Chemical Bulletin, 1997, 46, 1901-1903.	1.5	1
948	Dimerization of methyl isothiocyanate to the 2-mercapto-1-methylimidazole-5(4H)-thione anion under the action of a superbase. Russian Chemical Bulletin, 1998, 47, 187-188.	1.5	1
949	Polyethylene oxide—polysiloxane branched copolymers and networks. Russian Chemical Bulletin, 1999, 48, 463-469.	1.5	1
950	Multiple bond migration with participation of a protophilic agent. Russian Chemical Bulletin, 2000, 49, 408-414.	1.5	1
951	Quantum-chemical study of the protonation of pyrrolo[2,1-b]thiazole and its selenium and tellurium analogs. Russian Chemical Bulletin, 2000, 49, 1691-1695.	1.5	1
952	Oxidative Methoxycarbonylation of Allene in the Presence of a Copper–Palladium Catalyst. Doklady Chemistry, 2001, 378, 119-121.	0.9	1
953	Reaction of Activated Red Phosphorus with Phenylacetylene in the KOH-HMPA System. Russian Journal of General Chemistry, 2001, 71, 643-643.	0.8	1
954	Ab initio Study of the Reaction of Pyrrole Anions with Carbon Disulfide. Journal of Structural Chemistry, 2001, 42, 536-543.	1.0	1

#	Article	IF	CITATIONS
955	Title is missing!. Doklady Chemistry, 2002, 382, 19-20.	0.9	1
956	Solvatochromism of Heteroaromatic Compounds: X. 2-Phenylpyrrolide Anion. Russian Journal of General Chemistry, 2002, 72, 116-121.	0.8	1
957	Title is missing!. Russian Journal of Organic Chemistry, 2002, 38, 1808-1809.	0.8	1
958	Title is missing!. Russian Chemical Bulletin, 2003, 52, 511-512.	1.5	1
959	Nitromethane Reaction with Acetylene in KOH-DMSO System. Russian Journal of Organic Chemistry, 2003, 39, 269-270.	0.8	1
960	N-Isopropenylazoles: II. Fragmentation of N-Isopropenylazoles under Electron Impact. Russian Journal of Organic Chemistry, 2003, 39, 1325-1328.	0.8	1
961	Ab Initio Study of the Acetylene–Allene Rearrangement in 2-Propargylpyrrole, 2-Propargylfuran, and 2-Propargylthiophene. Journal of Structural Chemistry, 2004, 45, 5-11.	1.0	1
962	Rhodium(I) Tristyrylphosphine Cyclooctadiene Complexes. Russian Journal of General Chemistry, 2004, 74, 838-841.	0.8	1
963	Theoretical study of the double bond migration mechanism with participation of hydroxide ion. International Journal of Quantum Chemistry, 2004, 100, 367-374.	2.0	1
964	Synthesis of polyacetylene with sulfoxide functions. Russian Chemical Bulletin, 2005, 54, 789-791.	1.5	1
965	Homolytic Adamantylation of 2- and 4-Alkylsulfonylpyridines. Doklady Chemistry, 2005, 400, 3-6.	0.9	1
966	Maltol tosylate and triflate possessing nonlinear optical properties. Chemistry of Heterocyclic Compounds, 2006, 42, 1484-1485.	1.2	1
967	Quantum-chemical analysis of the nucleophilic substitution of the bromine atom by the cyano group at the sp-hybridized carbon atom in the methylbromoacetylene molecule. Journal of Structural Chemistry, 2008, 49, 395-398.	1.0	1
968	Hydrogen complexes of O-vinylacetoxime with trifluoroacetic acid. Russian Journal of General Chemistry, 2008, 78, 585-591.	0.8	1
969	5-Bromo-2,3-diphenyl-1-vinyl-1H-pyrrole and 2,3,5-triphenyl-1-vinyl-1H-pyrrole. Russian Journal of Organic Chemistry, 2008, 44, 1397-1398.	0.8	1
970	Nanoporous crosslinked macrocyclic polyethers based on diethylene glycol divinyl ether and their superbase complexes with KOH. Polymer Science - Series B, 2008, 50, 150-154.	0.8	1
971	Unexpected behavior of 4,4â€2-diacetyldiphenyl dioxime in the reaction with acetylene in MOH-DMSO systems. Doklady Chemistry, 2008, 421, 197-200.	0.9	1
972	Synthesis and polymerization of sterically hindered 2,5-diphenyl- and 2,3,5-triphenyl-1-vinylpyrroles. Russian Chemical Bulletin, 2009, 58, 115-118.	1.5	1

#	Article	IF	CITATIONS
973	Vinyl ethers and sulfides containing antioxidant functional groups. Russian Chemical Bulletin, 2009, 58, 1217-1223.	1.5	1
974	Properties of oligomer compositions based on vinylox and ethylene glycol with ED-20 epoxy. Polymer Science - Series D, 2009, 2, 20-26.	0.6	1
975	Atom-sparing synthesis of tertiary diphosphine dichalcogenides from acetylenes and secondary phosphine chalcogenides. Russian Journal of General Chemistry, 2010, 80, 232-238.	0.8	1
976	1,3,5-triphenylbenzene as unexpected by-product in the synthesis of 2,5-diphenylpyrrole from acetophenone oxime and phenylacetylene. Russian Journal of Organic Chemistry, 2010, 46, 457-458.	0.8	1
977	A Catalyst for the selective dehydrogenation of 4,5,6,7-tetrahydroindole into indole. Doklady Chemistry, 2011, 437, 95-97.	0.9	1
978	A theoretical study of ethynylation of formaldehyde with acetylene in the KOH-DMSO system. Doklady Chemistry, 2011, 439, 181-182.	0.9	1
979	Unexpected transformations of 1-aza-1,3,4-trienes in alcoholic potassium hydroxide. New classes of aza dienes. Russian Journal of Organic Chemistry, 2011, 47, 146-149.	0.8	1
980	Copolymerization of N-vinylpyrrole-2-carbaldehydes with styrene, N-vinylpyrrolidone, and ethylene glycol vinyl glycidyl ether. Polymer Science - Series B, 2011, 53, 125-131.	0.8	1
981	Regioselective Formylation of 1-(2-Oxiranylmethyl)-4,5,6,7-tetrahydroindole with DMF/(COCl)2: the Pyrrole vs. Oxirane Nucleophilicity. Mendeleev Communications, 2012, 22, 265-266.	1.6	1
982	2-Arylazo-1-vinylpyrroles: oligomerization in the presence of protic and aprotic acids. Chemistry of Heterocyclic Compounds, 2012, 48, 280-286.	1.2	1
983	Synthesis of oxazolidinylphosphine chalcogenides from aminoethyl vinyl ethers. Russian Chemical Bulletin, 2013, 62, 107-110.	1.5	1
984	Free-radical cooligomerization of N-vinyl-4,5,6,7-tetrahydroindole with butyl vinyl ether. Polymer Science - Series B, 2013, 55, 584-592.	0.8	1
985	Quantum chemical study of the formation of acetylenic alcohols and 7-methylidene-6,8-dioxabicyclo[3.2.1]octanes from acetylene and carbonyl compounds. Russian Chemical Bulletin, 2013, 62, 2306-2310.	1.5	1
986	Chemo- and regioselective modification of l-histidine with tertiary cyanopropargylic alcohols. Russian Chemical Bulletin, 2013, 62, 2538-2543.	1,5	1
987	Chemoselective synthesis of first representatives of bis(diorganothiophosphinyl)selenides, (R2P=S)2Se, from secondary phosphine sulfides and elemental selenium. Inorganic Chemistry Communication, 2013, 30, 124-127.	3.9	1
988	Homo- and copolymers of vinyl glycerol ethers. Doklady Chemistry, 2013, 449, 81-82.	0.9	1
989	Assemblage of 1-hydroxy-2-cyclopentene and 7-methylene-6,8-dioxabicyclo[3.2.1]octane from acetylene and 4-acetylpyridine molecules in a suspension of KOH-DMSO. Russian Chemical Bulletin, 2014, 63, 2402-2404.	1.5	1
990	Functional copolymers containing triazole and carboxylic groups. Doklady Chemistry, 2014, 454, 42-45.	0.9	1

#	Article	IF	CITATIONS
991	Diastereoselective self-organization of acetylene and acetophenone molecules into 1-benzoyl-3-hydroxy-cyclopentene in the presence of potassium hydroxide. Russian Journal of Organic Chemistry, 2014, 50, 1207-1209.	0.8	1
992	Synthesis of 5-Trifluoroacetylpyrrole-2-Carbaldehydes*. Chemistry of Heterocyclic Compounds, 2014, 50, 941-945.	1.2	1
993	Copolymers of 1-vinyl-1,2,4-triazole with acrylic acid. Doklady Chemistry, 2014, 454, 36-38.	0.9	1
994	Penta-O-{1-[2-(glycidyloxy)ethoxy]ethyl}-d-glucopyranose: synthesis and application for the preservation of cardiovascular bioprostheses. Russian Chemical Bulletin, 2015, 64, 1451-1457.	1.5	1
995	Atom-economic synthesis of highly branched functional â€~tripod-like' triphosphine sulfides. Journal of Sulfur Chemistry, 2015, 36, 227-233.	2.0	1
996	Quantum chemical study of the stereoselectivity of nucleophilic addition of 2-methylcyclohexanone to phenylacetylene. Doklady Chemistry, 2015, 461, 100-103.	0.9	1
997	Alkanethiol-promoted stereoselective radical rearrangement of 7-methylidene-6,8-dioxabicyclo[3.2.1]octanes to 2-acetyl-3,4-dihydropyrans. Russian Journal of Organic Chemistry, 2016, 52, 1056-1058.	0.8	1
998	Formation mechanism and conformational structure of 2,3,4-trimethyl-1,5-di(thiophen-2-yl)pentane-1,5-dione: quantum chemical study. Russian Chemical Bulletin, 2016, 65, 394-400.	1.5	1
999	Transformations of 2-methyl-6-(methylsulfanyl)-5-phenyl-2,3-dihydropyridine in the presence of potassium tert-butoxide: Concurrent aromatization and dimerization processes. Russian Journal of Organic Chemistry, 2017, 53, 130-133.	0.8	1
1000	Regio- and stereoselective N 2-functionalization with propanamide fragment of aromatic and heteroaromatic aldehydes thiosemicarbazones. Russian Journal of Organic Chemistry, 2017, 53, 1226-1232.	0.8	1
1001	Phosphorylation of alkyl methanesulfonates with elemental phosphorus in a strongly basic medium: Synthesis of alkylphosphinic acids. Russian Journal of General Chemistry, 2017, 87, 1876-1878.	0.8	1
1002	Unexpected Carbon–Selenium Bond Formation in the Reaction of Secondary Phosphine Selenides with Benzoylphenylacetylene. Russian Journal of General Chemistry, 2017, 87, 2902-2903.	0.8	1
1003	Gold-Catalyzed Nucleophilic Addition of Imidazole to Arabinogalactan Propargyl Ether. Russian Journal of Organic Chemistry, 2018, 54, 154-155.	0.8	1
1004	Metal-free addition of aliphatic carboxylic acids to cyanopropargyl alcohols: an access to new families of functionalized dihydrofurans and 3(2H)-furanones. Arkivoc, 2018, 2018, 85-96.	0.5	1
1005	Reduction of Acridine and 9-Chloroacridine with Red Phosphorus in the KOH/DMSO System. Doklady Chemistry, 2019, 487, 177-179.	0.9	1
1006	Regioselective Synthesis of 2-Acylbutadienes from β,γ-Unsaturated Ketones. Synthesis, 2019, 51, 3825-3833.	2.3	1
1007	Cationic Copolymerization of Cholesterol Vinyl Ether with N-Allenylpyrrolidone: A Route to Pharmacologically Promising Oligomers. Doklady Chemistry, 2019, 485, 112-115.	0.9	1
1008	A hydrogen pump: Transfer of four hydrogens from a cyclohexane ring to a triple bond during a menthofuran/bromoacetylene adduct rearrangement. Tetrahedron Letters, 2019, 60, 1864-1867.	1.4	1

#	Article	IF	CITATIONS
1009	From 1,2,5-Oxadiazolo[3,4-g]indoles to Pyrrolo[2,3-f]quinoxalines in One Preparative Stage. Russian Journal of Organic Chemistry, 2019, 55, 273-275.	0.8	1
1010	1,2,5-Oxadiazolo[3,4-g]indoles via annelation of 6,7-dihydrobenzo[c][1,2,5]oxadiazol-4(5H)-one oxime with acetylene. Mendeleev Communications, 2019, 29, 53-54.	1.6	1
1011	Phosphorylation of Acetylaminophenols with Secondary Phosphine Chalcogenides: Synthesis of O-(Acetylamino)phenyl Chalcogenophosphinates. Russian Journal of General Chemistry, 2019, 89, 59-62.	0.8	1
1012	Acylacetylenes in multiple functionalization of hydroxyquinolines and quinolones. Tetrahedron, 2020, 76, 131523.	1.9	1
1013	Bio-inspired Functionalized Pyrrole-Pyridone Ensembles: Synthesis on the Platform of Acylethynylpyrroles. Synthesis, 2020, 52, 2698-2704.	2.3	1
1014	Synthesis of Non-Symmetric Functionalized Polyfluoroalkyl Phosphites. Russian Journal of General Chemistry, 2020, 90, 839-844.	0.8	1
1015	Unexpected Formation of Thiophene in the Pyrrole Synthesis from Methoxyallene and Methyl Isothiocyanate. Russian Journal of Organic Chemistry, 2021, 57, 287-291.	0.8	1
1016	Low-Temperature Chemo- and Stereoselective [2+2]-Cyclodimerization of 5-Ethenylidene-4,5-dihydro-1,3-thiazole: An Approach to Unique Derivatives of 1,3-Bis(methylene)cyclobutane. Russian Journal of Organic Chemistry, 2021, 57, 283-286.	0.8	1
1017	Synthesis and Unexpected Transformation of 5-[(1,3-Dioxolan-2-ylmethyl)sulfanyl]-1H-pyrrol-2-amine into 5-{[2-(2-Hydroxyethoxy)ethenyl]sulfanyl}-1H-pyrrol-2-amine in the Presence of a Superbase. Russian Journal of Organic Chemistry, 2021, 57, 486-489.	0.8	1
1018	Functionalized Thieno[3,2―b]pyrroles from Acylthiophenes, Acetylene Gas and Hydrazines in Two Steps. European Journal of Organic Chemistry, 2021, 2021, 2802-2806.	2.4	1
1019	The Effects of Humic Substances and Humic Substance-Based Silver Nanocomposites on the Viability of Rhizospheric Microorganisms. Nanobiotechnology Reports, 2021, 16, 525-531.	0.6	1
1020	Cationic copolymerisation of cholesterol vinyl ether with N-allenylpyrrolidone; a route to pharmacologically promising oligomers. Proceedings of the Academy of Sciences, 2019, 485, 697-700.	0.1	1
1021	Hydroalkoxylation of alkynes by a nitroxyl containing alcohol, 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl: synthesis of spin-labeled enol ethers. Arkivoc, 2015, 2015, 330-346.	0.5	1
1022	Clathrate Hydrates of Organic Solvents as Auxiliary Intermediates in Pharmaceutical Research and Development: Improving Dissolution Behaviour of a New Anti-Tuberculosis Drug, Perchlozon. Pharmaceutics, 2022, 14, 495.	4.5	1
1023	Interaction of 1, 3-dioxa-2-silacyclanes and their oligomers with alklymagnesium and arylmagnesium halides. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1966, 15, 1239-1240.	0.0	0
1024	Vinyl ethers, containing the silico-acetylenic fragment. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1966, 15, 1806-1807.	0.0	0
1025	Cleavage of 1,3-dioxo-2-silacyclanes and their oligomers by acid halides of carboxylic acids. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1966, 15, 352-353.	0.0	0
1026	Reaction of 2-methyl-1,3-dioxolan with vinylethynylmagnesium bromide and the structure of the iotsich complex. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1966, 15, 1957-1959.	0.0	0

#	Article	IF	CITATIONS
1027	The reaction of I,3-dioxolanes with Normant's reagent. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1968, 17, 1815-1817.	0.0	0
1028	Complex formation in the reaction of 1,3-dioxolanes with Grignard reagent. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1968, 17, 2458-2462.	0.0	0
1029	Unusual temperature relation of the kinetics isotope effect of deuterium in the addition of alcohols to vinyl ethers. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1968, 17, 893-893.	0.0	0
1030	New variation of the alkaline cleavage of dialkyl disulfides. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1971, 20, 2176-2178.	0.0	0
1031	Stereochemistry of the vinylation of thiols. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1971, 20, 1835-1836.	0.0	0
1032	Divinyl ethers of glycols in homolytic reactions with carbon tetrachloride and aldehydes. Bulletin of the USSR Division of Chemical Science, 1971, 20, 1924-1927.	0.0	0
1033	Infrared spectra and rotational isomerism of certain crystalline vinyl ethers. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1971, 20, 1359-1361.	0.0	0
1034	Kinetic isotope effect of deuterium in the reaction of vinyl ethyl ether with ethanol in benzene. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1971, 20, 358-359.	0.0	0
1035	Influence of structure on the ratio and nature of the rotamers of vinyl ethers. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1972, 21, 103-108.	0.0	0
1036	High-temperature liquid-phase degradation of 1,3-dioxocyclanes. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1975, 24, 2276-2276.	0.0	0
1037	Kinetics and mechanism of the acid catalytic hydrolysis of 1-alkylthio-1-buten-3-ynes. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1975, 24, 1856-1860.	0.0	0
1038	Selective hydrogenation of the vinyl group of 1-vinylpyrroles. Chemistry of Heterocyclic Compounds, 1977, 13, 172-173.	1.2	0
1039	N-vinyl-?-(trifluoroacetyl) pyrroles. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1977, 26, 2446-2446.	0.0	0
1040	Unusual reaction of trialkylsilylalkanethiols with divinyl sulfoxide. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1978, 27, 1478-1478.	0.0	0
1041	Pyrroles from ketoximes and acetylene. Chemistry of Heterocyclic Compounds, 1978, 14, 41-46.	1.2	0
1042	Two pathways for the protolysis of 1-(alkythio)-1-buten-3-ynes and the effect of cis-trans isomerism. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1978, 27, 133-138.	0.0	0
1043	Synthesis and antimicrobial activity of some pyrroles. Pharmaceutical Chemistry Journal, 1981, 15, 168-171.	0.8	0
1044	Reaction of tertiary cyanoacetylenic alcohols with hydrogen bromide. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1983, 32, 1494-1495.	0.0	0

#	Article	IF	CITATIONS
1045	Nonempirical investigation of acetylene complexes with cations of alkali metals 4. Vinylidene structures and barriers to their isomerization. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1983, 32, 1783-1787.	0.0	0
1046	Divinyl sulfoxide Communication 7. Nucleophilic addition of triorganylsilylalkanethiols and trialkylsilylalkanols to divinyl sulfoxide. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1985, 34, 813-816.	0.0	0
1047	Novel polyfunctional spiroheterocyclics based on acetylenic hydroxyacids. Chemistry of Heterocyclic Compounds, 1986, 22, 1160-1160.	1.2	0
1048	Vinyl ether of 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl and its oligomers. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1986, 35, 2522-2526.	0.0	0
1049	Photoelectron and ultraviolet absorption spectra of allenyl vinyl ethers. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1989, 38, 1848-1851.	0.0	0
1050	Pyrroles from ketoximes and acetylene. 39. Effect of the nature of the alkali metal cation and the solvent on the reaction rate in MOH-DMSO systems. Chemistry of Heterocyclic Compounds, 1989, 25, 635-638.	1.2	0
1051	Unusual reaction of a cyclic thiocarbonate with secondary amines. Chemistry of Heterocyclic Compounds, 1989, 25, 713-714.	1.2	0
1052	Protonated forms of 2-(2-furyl)pyrroles and their interconversions. Chemistry of Heterocyclic Compounds, 1989, 25, 1122-1133.	1.2	0
1053	Oligomerization of N-vinylpyrroles under the action of sodium metal. Chemistry of Heterocyclic Compounds, 1989, 25, 1190-1191.	1.2	0
1054	Electrophilic addition of phenols to 1-vinyl-4,5,6,7-tetrahydroindole. Chemistry of Heterocyclic Compounds, 1989, 25, 501-503.	1.2	0
1055	Conformational structure of divinyl sulfide. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 1351-1354.	0.0	0
1056	Conformational study of N-vinyl-2-isopropyl- and N-vinyl-2-cyclopropylpyrroles by1H and13C NMR. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 914-921.	0.0	0
1057	Unexpected result of the reaction of 2-vinyloxyethyl isothiocyanate with bromoacetic acid. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 2079-2080.	0.0	0
1058	Protonation of 1,4-bis(1-vinyl-2-pyrrolyl)benzene. Chemistry of Heterocyclic Compounds, 1991, 27, 832-836.	1.2	0
1059	Quantum-chemical investigation of the protonated forms of 2-(2-furyl)pyrrole. Chemistry of Heterocyclic Compounds, 1991, 27, 583-590.	1.2	0
1060	A convenient synthesis of esters of 2-pyrroledithiocarboxylic acids. Chemistry of Heterocyclic Compounds, 1991, 27, 801-701.	1.2	0
1061	Protonated forms of 2-(2-thienyl)pyrroles. Investigation by means of 1H NMR spectroscopy and MNDO calculations. Chemistry of Heterocyclic Compounds, 1993, 29, 711-719.	1.2	0
1062	Antiviral activity of ammonium salts of β-alkylthiopropionic acids. Pharmaceutical Chemistry Journal, 1995, 29, 63-65.	0.8	0

#	Article	IF	CITATIONS
1063	Reaction of Phosphorus Red with α,ï‰-Dihaloalkanes under Phase-Transfer Conditions. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 111, 173-173.	1.6	0
1064	Polymerization of 1-allenylpyrroles. Russian Chemical Bulletin, 1997, 46, 1855-1858.	1.5	0
1065	Title is missing!. Russian Journal of General Chemistry, 2001, 71, 718-720.	0.8	0
1066	Catalysis of Electrophilic Addition of Alcohols to Alkoxyalkenes by Lithium Salts. Russian Journal of General Chemistry, 2001, 71, 319-320.	0.8	0
1067	Reaction Of Metallated Allenes With Phenylsulfinylamine. Sulfur Letters, 2002, 25, 1-6.	0.3	0
1068	Polyfunctional 1,3-Dithiolanes from 5,5-Dialkyl-4-Cyanomethylene-1,3-Oxathiolan-2-Ones. Sulfur Letters, 2002, 25, 7-13.	0.3	0
1069	Title is missing!. Russian Journal of General Chemistry, 2002, 72, 418-425.	0.8	0
1070	Metal Complexes of 1-Allenylimidazoles. Russian Journal of General Chemistry, 2002, 72, 1294-1298.	0.8	0
1071	Radical Intermediates of Nucleophilic Addition of Pyrroles to Disubstituted Activated Acetylenes. Doklady Chemistry, 2003, 390, 137-140.	0.9	0
1072	Quantum Chemical Study of Spatial Structure and Stereoelectronic Properties of Iminodihydrofuran Ensembles. Journal of Structural Chemistry, 2003, 44, 932-945.	1.0	0
1073	First Organophosphorus Nonlinear-Optical Media. Doklady Chemistry, 2004, 394, 34-35.	0.9	0
1074	Quantum-Chemical Study of the Profiles of Reactions that Form Pyrrole Anion N-Adducts with CS2 and CO2. Journal of Structural Chemistry, 2004, 45, 940-944.	1.0	0
1075	Noncatalytic Regio- and Stereoselective Addition of Secondary Phosphines to Cyanoacetylenic Alcohols. Russian Journal of General Chemistry, 2005, 75, 514-517.	0.8	0
1076	Polymerization of pyridine oxirane zwitterions. Doklady Chemistry, 2006, 408, 70-72.	0.9	0
1077	Copolymerization of N-allenylimidazole with di(ethylene glycol) divinyl ether and complexation of the copolymers with CuCl2. Russian Chemical Bulletin, 2006, 55, 1010-1014.	1.5	0
1078	N,N-dimethylhydroxylamine carbonate and oxalate as sources of N,N-dimethylaminoxyl radicals. Doklady Chemistry, 2007, 415, 186-188.	0.9	0
1079	An unexpected reaction pattern of divinyl sulfoxide with potassium O-alkyl carbonodithioates under microwave assistance. Russian Journal of General Chemistry, 2008, 78, 678-679.	0.8	0
1080	A mixture of tris(propenyl)phosphinoxides: A new effective collector reagent for copper-nickel ore flotation. Theoretical Foundations of Chemical Engineering, 2008, 42, 731-732.	0.7	0

#	Article	IF	CITATIONS
1081	Unexpected formation of 2,4,6-triphenylpyridine in the synthesis of 2,5-diphenyl-pyrrole from acetophenone oxime and phenylacetylene. Chemistry of Heterocyclic Compounds, 2009, 45, 868-870.	1.2	Ο
1082	O-vinylacetoxime as a hydrogen bond acceptor. Russian Journal of General Chemistry, 2009, 79, 390-397.	0.8	0
1083	Selective thermal oxidation of 2,3-dimethyl-5-(phenyldiazenyl)-1-vinyl-1H-pyrrole to the corresponding pyrrole-2-carbaldehyde: Stabilization of the pyrrole ring by phenylazo substituent. Russian Journal of Organic Chemistry, 2009, 45, 1567-1568.	0.8	Ο
1084	Influence of intermolecular interactions on the conformation of a 2-[bis(2-ethylphenyl)thiophosphorylhydroxymethyl]-1-ethylbenzimidazole molecule (L) upon complex formation with ZnCl2: Crystal and molecular structures of molecule L. Russian Journal of Inorganic Chemistry, 2009, 54, 906-915.	1.3	0
1085	Nanocomposites of red phosphorus in the reaction with 4-methoxystyrene. Russian Journal of General Chemistry, 2010, 80, 1380-1382.	0.8	О
1086	Formation of N-methylsulfanylvinyl derivative in the synthesis of 2-(benzo[b]thiophen-3-yl)pyrrole from 3-acetylbenzo[b]-thiophene oxime and acetylene in KOH-DMSO. Russian Journal of Organic Chemistry, 2010, 46, 1262-1263.	0.8	0
1087	Formation of N-benzylbenzamide from benzyl phenyl ketone oxime in a system C2H2-KOH-DMSO. Key role of acetylene. Russian Journal of Organic Chemistry, 2010, 46, 1416-1417.	0.8	О
1088	2,3,6-triphenylpyridine. A novel by-product in the synthesis of 2,3-diphenyl-1-vinylpyrrole from benzyl phenyl ketoxime and acetylene in the system KOH–DMSO. Chemistry of Heterocyclic Compounds, 2010, 46, 759-761.	1.2	0
1089	An efficient synthesis of cholesterol formate. Russian Chemical Bulletin, 2010, 59, 302-303.	1.5	0
1090	2,4,5-triphenylimidazole as an indicator of intermediate formation of 2,3-diphenyl-2H-azirine in the synthesis of 1-vinyl-2,3-diphenylpyrrole from benzyl phenyl ketoxime and acetylene. Doklady Chemistry, 2011, 436, 43-45.	0.9	0
1091	Stereospecific protonation of pyrrole-2-carboxaldehyde Z-oximes as a result of through-space cation stabilization with oxime hydroxyl. Mendeleev Communications, 2011, 21, 103-105.	1.6	Ο
1092	Rheological properties of an original pharmaceutical composition of a nanostructured silver system stabilized by arabinogalactan. Pharmaceutical Chemistry Journal, 2013, 47, 99-102.	0.8	0
1093	5-vinyloxymethyl-5-ethyl-1,3-dioxane in reactions of radical homo- and copolymerization with styrene. Doklady Chemistry, 2013, 448, 52-54.	0.9	0
1094	Synthesis and physicochemical properties of homo- and copolymers of 4-vinyloxymethyl-2-methyl-1,3-dioxolane. Doklady Chemistry, 2013, 448, 29-30.	0.9	0
1095	Radical copolymerization of 1-vinyl-1,2,4-triazole with methacrylic acid. Doklady Chemistry, 2014, 454, 17-18.	0.9	Ο
1096	Cascade assembly of frontalin derivatives from cyclohexanone and acetylene in the system KOH-DMSO. Russian Journal of Organic Chemistry, 2015, 51, 1799-1800.	0.8	0
1097	Simple synthesis of O-(2-Chloroprop-2-enyl)ketoximes. Russian Journal of Organic Chemistry, 2015, 51, 1177-1179.	0.8	0
1098	Unexpected reaction of 9-acetylanthracene with acetylene in a suspension of potassium hydroxide in DMSO. Russian Journal of Organic Chemistry, 2015, 51, 1508-1509.	0.8	0

#	Article	IF	CITATIONS
1099	Aromatization of 5-phenyl-2-[(vinyloxy)methyl]-2,3-dihydropyridine via concurrent elimination of hydrogen and vinyl alcohol under the action of the system t-BuOK–DMSO. Russian Journal of General Chemistry, 2016, 86, 2551-2554.	0.8	0
1100	Oligomerization of N-vinylpyrroles under the action of iodine. Polymer Science - Series B, 2016, 58, 681-688.	0.8	0
1101	Aminomethylation of substituted pyrroles and 4,5,6,7-tetrahydroindoles with biogenic cyclic amines. Russian Journal of Organic Chemistry, 2017, 53, 184-191.	0.8	Ο
1102	Sulfur-containing polymer and carbon materials based on poly(vinyl chloride). Doklady Chemistry, 2017, 473, 53-56.	0.9	0
1103	Microwave-assisted catalyst-free addition of secondary phosphines to fullerene C 60. Mendeleev Communications, 2017, 27, 198-200.	1.6	0
1104	First example of one-pot assembly of tetrasubstituted thiophene with amino- and ester functions from methoxyallene, methyl isothiocyanate, and methyl 2-bromoacetate. Russian Journal of Organic Chemistry, 2017, 53, 1272-1274.	0.8	0
1105	Synthesis of glycidyl propargyl ether. Russian Journal of Organic Chemistry, 2017, 53, 1740-1741.	0.8	0
1106	Optical absorption of composite systems with silver nanoparticles dispersed in arabinogalactan and arabinogalactan-g-polypyrrole block copolymer matrices. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 1244-1250.	0.6	0
1107	Propagator quantum chemical study of S-cis-(Z)-2-(2-formylethenyl)pyrrole: electronic structure and aspects of intramolecular hydrogen bond manifestation in ionization spectra. Russian Chemical Bulletin, 2017, 66, 2241-2247.	1.5	0
1108	One-Pot Assembly of Alkyl [(5-Amino-1H-pyrrol-2-yl)sulfanyl]-acetates from Propargylamines, Isothiocyanates, and Alkyl Bromoacetates. Russian Journal of Organic Chemistry, 2018, 54, 1325-1328.	0.8	0
1109	Silver Nanobiocomposites Based on Humic Substances As Highly Efficient Stimulators of Seed Germination. Nanotechnologies in Russia, 2018, 13, 305-310.	0.7	0
1110	Free-Radical Co-Oligomerization of N-Vinylpyrroles with N-Vinylpyrrolidone: A Route to New Bioactive Oligomers. Doklady Chemistry, 2018, 482, 237-241.	0.9	0
1111	Cationic Copolymerization of Cholesterol Vinyl Ether with Methyl Vinyl Sulfide: Towards New Biologically Active Oligomers. Doklady Chemistry, 2019, 489, 288-291.	0.9	0
1112	Asymmetric meso-CF3-dipyrromethanes with amino- and heterocyclic functions from trifluoro(pyrrolyl)ethanols and pyrroles. Journal of Fluorine Chemistry, 2020, 231, 109455.	1.7	0
1113	Chemoselective vinylation of aminophenols with acetylene catalyzed by sodium aminophenolates in aqueous DMSO. Mendeleev Communications, 2020, 30, 788-790.	1.6	0
1114	Synthesis of Amido- and Diamidophosphites with Polyfluoroalkyl Substituents. Russian Journal of General Chemistry, 2020, 90, 229-234.	0.8	0
1115	Acylated Aromatic Sulfides in Organic Synthesis. , 2021, , 209-234.		0

#	Article	IF	CITATIONS
1117	10.1007/s11178-008-1015-x. , 2010, 44, 120.		0
1118	10.1007/s11178-008-3013-4. , 2010, 44, 388.		0
1119	10.1007/s11178-008-2009-4. , 2010, 44, 237.		0
1120	Oxidative Cross-Coupling of Cysteamine with Secondary Phosphine Chalcogenides: Aspects of Reaction Chemoselectivity. Doklady Chemistry, 2020, 490, 11-15.	0.9	0
1121	Homolytic Adamantylation of 2- and 4-Alkylsulfonylpyridines. Doklady Chemistry, 2005, 400, 3-6.	0.9	0
1122	Towards Rare-Functionalized N-Alkenyl-1H-pyrroles via Regioselectively Metalated N-Isopropenyl-1H-pyrroles. Synthesis, 0, , .	2.3	0