Wei-de Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2600505/publications.pdf

Version: 2024-02-01

126	3,550	35	51
papers	citations	h-index	g-index
130	130	130	5391
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	<i>GDCRNATools</i> : an R/Bioconductor package for integrative analysis of lncRNA, miRNA and mRNA data in GDC. Bioinformatics, 2018, 34, 2515-2517.	1.8	195
2	Whole-genome and Transcriptome Sequencing of Prostate Cancer Identify New Genetic Alterations Driving Disease Progression. European Urology, 2018, 73, 322-339.	0.9	130
3	miR-195 Inhibits Tumor Progression by Targeting RPS6KB1 in Human Prostate Cancer. Clinical Cancer Research, 2015, 21, 4922-4934.	3.2	121
4	MicroRNA-224 inhibits progression of human prostate cancer by downregulating TRIB1. International Journal of Cancer, 2014, 135, 541-550.	2.3	114
5	Supine Versus Prone Position in Percutaneous Nephrolithotomy for Kidney Calculi: A Meta-Analysis. Journal of Endourology, 2016, 30, 754-763.	1.1	95
6	CD147, MMP-1, MMP-2 and MMP-9 Protein Expression as Significant Prognostic Factors in Human Prostate Cancer. Oncology, 2008, 75, 230-236.	0.9	89
7	Overexpression of BUB1B contributes to progression of prostate cancer and predicts poor outcome in patients with prostate cancer. OncoTargets and Therapy, 2016, 9, 2211.	1.0	87
8	Aberrant FGFR Tyrosine Kinase Signaling Enhances the Warburg Effect by Reprogramming LDH Isoform Expression and Activity in Prostate Cancer. Cancer Research, 2018, 78, 4459-4470.	0.4	84
9	Ki-67 and PCNA expression in prostate cancer and benign prostatic hyperplasia. Clinical and Investigative Medicine, 2008, 31, 8.	0.3	83
10	Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18513-18518.	3.3	70
11	SOXs in human prostate cancer: implication as progression and prognosis factors. BMC Cancer, 2012, 12, 248.	1.1	69
12	Dysregulated microRNA-224/apelin axis associated with aggressive progression and poor prognosis in patients with prostate cancer. Human Pathology, 2015, 46, 295-303.	1.1	61
13	Tumor cell-derived placental growth factor sensitizes antiangiogenic and antitumor effects of anti-VEGF drugs. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 654-659.	3.3	57
14	Improvement of antiangiogenic cancer therapy by understanding the mechanisms of angiogenic factor interplay and drug resistance. Seminars in Cancer Biology, 2009, 19, 338-343.	4.3	55
15	CD147 and VEGF Expression in Advanced Renal Cell Carcinoma and Their Prognostic Value. Cancer Investigation, 2009, 27, 788-793.	0.6	53
16	CancerMIRNome: an interactive analysis and visualization database for miRNome profiles of human cancer. Nucleic Acids Research, 2022, 50, D1139-D1146.	6.5	49
17	Increased intracellular Clâ^' concentration promotes ongoing inflammation in airway epithelium. Mucosal Immunology, 2018, 11, 1149-1157.	2.7	46
18	MicroRNAâ€⊋3b downregulates peroxiredoxin III in human prostate cancer. FEBS Letters, 2012, 586, 2451-2458.	1.3	45

#	Article	IF	CITATIONS
19	Expression of PD‣1 in tumorâ€associated nerves correlates with reduced CD8 ⁺ tumorâ€associated lymphocytes and poor prognosis in prostate cancer. International Journal of Cancer, 2019, 144, 3099-3110.	2.3	45
20	Identification of novel serological tumor markers for human prostate cancer using integrative transcriptome and proteome analysis. Medical Oncology, 2012, 29, 2877-2888.	1.2	44
21	Expression of CD147 is associated with prostate cancer progression. International Journal of Cancer, 2012, 130, 300-308.	2.3	44
22	MicroRNA-224 and its target CAMKK2 synergistically influence tumor progression and patient prognosis in prostate cancer. Tumor Biology, 2015, 36, 1983-1991.	0.8	44
23	E2F1 promotes tumor cell invasion and migration through regulating CD147 in prostate cancer. International Journal of Oncology, 2016, 48, 1650-1658.	1.4	44
24	CC Chemokine Ligand 18 Correlates with Malignant Progression of Prostate Cancer. BioMed Research International, 2014, 2014, 1-10.	0.9	43
25	GPD1 Enhances the Anticancer Effects of Metformin by Synergistically Increasing Total Cellular Glycerol-3-Phosphate. Cancer Research, 2020, 80, 2150-2162.	0.4	43
26	Global analysis of the differentially expressed miRNAs of prostate cancer in Chinese patients. BMC Genomics, 2013, 14, 757.	1.2	42
27	High expression of ASPM correlates with tumor progression and predicts poor outcome in patients with prostate cancer. International Urology and Nephrology, 2017, 49, 817-823.	0.6	42
28	Expression of Hedgehog Pathway Components is Associated with Bladder Cancer Progression and Clinical Outcome. Pathology and Oncology Research, 2012, 18, 349-355.	0.9	41
29	Autophagy defects suggested by low levels of autophagy activator MAP1S and high levels of autophagy inhibitor LRPPRC predict poor prognosis of prostate cancer patients. Molecular Carcinogenesis, 2015, 54, 1194-1204.	1.3	41
30	Expression and Clinical Significance of CD147 in Genitourinary Carcinomas. Journal of Surgical Research, 2010, 160, 260-267.	0.8	40
31	Expression of SOCSs in human prostate cancer and their association in prognosis. Molecular and Cellular Biochemistry, 2013, 381, 51-59.	1.4	40
32	Decreased expression of myosin light chain MYL9 in stroma predicts malignant progression and poor biochemical recurrence-free survival in prostate cancer. Medical Oncology, 2014, 31, 820.	1.2	40
33	Elevated levels of mitochondrionâ€associated autophagy inhibitor LRPPRC are associated with poor prognosis in patients with prostate cancer. Cancer, 2014, 120, 1228-1236.	2.0	39
34	TRIB1 induces macrophages to M2 phenotype by inhibiting IKB-zeta in prostate cancer. Cellular Signalling, 2019, 59, 152-162.	1.7	39
35	MicroRNA-335 Acts as a Candidate Tumor Suppressor in Prostate Cancer. Pathology and Oncology Research, 2013, 19, 529-537.	0.9	38
36	Enhanced expression of centromere protein F predicts clinical progression and prognosis in patients with prostate cancer. International Journal of Molecular Medicine, 2015, 35, 966-972.	1.8	38

3

#	Article	IF	Citations
37	CD147 Expression Indicates Unfavourable Prognosis in Prostate Cancer. Pathology and Oncology Research, 2009, 15, 369-374.	0.9	36
38	MicroRNA-30c serves as an independent biochemical recurrence predictor and potential tumor suppressor for prostate cancer. Molecular Biology Reports, 2014, 41, 2779-2788.	1.0	34
39	Overexpression of NIMA-related kinase 2 is associated with progression and poor prognosis of prostate cancer. BMC Urology, 2015, 15, 90.	0.6	34
40	miR-195 inhibits cell proliferation and angiogenesis in human prostate cancer by downregulating PRR11 expression. Oncology Reports, 2018, 39, 1658-1670.	1.2	33
41	Tumor-derived lymphangiogenic factors and lymphatic metastasis. Biomedicine and Pharmacotherapy, 2007, 61, 534-539.	2.5	32
42	BCL9, a coactivator for Wnt/ \hat{l}^2 -catenin transcription, is targeted by miR-30c and is associated with prostate cancer progression. Oncology Letters, 2016, 11, 2001-2008.	0.8	31
43	Overexpression of TPX2 is associated with progression and prognosis of prostate cancer. Oncology Letters, 2018, 16, 2823-2832.	0.8	31
44	Characterization of the m6A-Associated Tumor Immune Microenvironment in Prostate Cancer to Aid Immunotherapy. Frontiers in Immunology, 2021, 12, 735170.	2.2	31
45	Ghrelin stimulates proliferation of human osteoblastic TE85 cells via NO/cGMP signaling pathway. Endocrine, 2009, 35, 112-117.	1.1	30
46	Proton magnetic resonance spectroscopy in neonates with hypoxic-ischemic injury and its prognostic value. Translational Research, 2008, 152, 225-232.	2.2	29
47	A HIF1 \hat{i} ±-GPD1 feedforward loop inhibits the progression of renal clear cell carcinoma via mitochondrial function and lipid metabolism. Journal of Experimental and Clinical Cancer Research, 2021, 40, 188.	3.5	27
48	Succinate dehydrogenase B: a new prognostic biomarker in clear cell renal cell carcinoma. Human Pathology, 2015, 46, 820-826.	1.1	26
49	An Integrative Proteomics and Interaction Network-Based Classifier for Prostate Cancer Diagnosis. PLoS ONE, 2013, 8, e63941.	1.1	26
50	Analysis of the specific pathways and networks of prostate cancer for gene expression profiles in the Chinese population. Medical Oncology, 2012, 29, 1972-1984.	1.2	24
51	Elevated expression of IMPDH2 is associated with progression of kidney and bladder cancer. Medical Oncology, 2015, 32, 373.	1.2	24
52	HMGCS2 functions as a tumor suppressor and has a prognostic impact in prostate cancer. Pathology Research and Practice, 2019, 215, 152464.	1.0	23
53	Analysis of genetic aberrations on chromosomal region 8q21â€"24 identifies E2F5 as an oncogene with copy number gain in prostate cancer. Medical Oncology, 2013, 30, 465.	1.2	22
54	Protein regulator of cytokinesis 1 overexpression predicts biochemical recurrence in men with prostate cancer. Biomedicine and Pharmacotherapy, 2016, 78, 116-120.	2.5	22

#	Article	IF	Citations
55	miR-30c suppresses prostate cancer survival by targeting the ASF/SF2 splicing factor oncoprotein. Molecular Medicine Reports, 2017, 16, 2431-2438.	1.1	22
56	Mitochondrion-associated protein peroxiredoxin 3 promotes benign prostatic hyperplasia through autophagy suppression and pyroptosis activation. Oncotarget, 2017, 8, 80295-80302.	0.8	22
57	Identification of a novel microRNA-mRNA regulatory biomodule in human prostate cancer. Cell Death and Disease, 2018, 9, 301.	2.7	20
58	Autophagy induced by overexpression of DCTPP1 promotes tumor progression and predicts poor clinical outcome in prostate cancer. International Journal of Biological Macromolecules, 2018, 118, 599-609.	3.6	19
59	SOCS6 Functions as a Tumor Suppressor by Inducing Apoptosis and Inhibiting Angiogenesis in Human Prostate Cancer. Current Cancer Drug Targets, 2018, 18, 894-904.	0.8	19
60	HnRNP-L-regulated circCSPP1/miR-520h/EGR1 axis modulates autophagy and promotes progression in prostate cancer. Molecular Therapy - Nucleic Acids, 2021, 26, 927-944.	2.3	19
61	Inhibition of Proliferation, Invasion, and Migration of Prostate Cancer Cells by Downregulating Elongation Factor- $1\hat{l}$ ± Expression. Molecular Medicine, 2009, 15, 363-370.	1.9	18
62	Association of TMPRSS2 and KLK11 gene expression levels with clinical progression of human prostate cancer. Medical Oncology, 2010, 27, 145-151.	1.2	18
63	Combined overexpression of HIVEP3 and SOX9 predicts unfavorable biochemical recurrence-free survival in patients with prostate cancer. OncoTargets and Therapy, 2014, 7, 137.	1.0	18
64	CK20 and Ki-67 as significant prognostic factors in human bladder carcinoma. Clinical and Experimental Medicine, 2010, 10, 153-158.	1.9	17
65	Overexpression of PDZ-binding kinase confers malignant phenotype in prostate cancer via the regulation of E2F1. International Journal of Biological Macromolecules, 2015, 81, 615-623.	3.6	17
66	Synergistic anticancer effect of exogenous wild-type <i>p53</i> gene combined with 5-FU in human colon cancer resistant to 5-FU <i>in vivo</i> . World Journal of Gastroenterology, 2016, 22, 7342.	1.4	17
67	Real-time quantitative RT-PCR assessment of PIM-1 and hK2 mRNA expression in benign prostate hyperplasia and prostate cancer. Medical Oncology, 2009, 26, 303-308.	1.2	16
68	Extracellular matrix metalloproteinase inducer: a novel poor prognostic marker for human seminomas. Clinical and Translational Oncology, 2012, 14, 190-196.	1.2	16
69	<p>Aberrant Expression of Citrate Synthase is Linked to Disease Progression and Clinical Outcome in Prostate Cancer</p> . Cancer Management and Research, 2020, Volume 12, 6149-6163.	0.9	16
70	Down-regulation of ACACA suppresses the malignant progression of Prostate Cancer through inhibiting mitochondrial potential. Journal of Cancer, 2021, 12, 232-243.	1.2	15
71	Down-regulation of the ErbB3 binding protein 1 in human bladder cancer promotes tumor progression and cell proliferation. Molecular Biology Reports, 2013, 40, 3799-3805.	1.0	14
72	Role of GPR30 in estrogen-induced prostate epithelial apoptosis and benign prostatic hyperplasia. Biochemical and Biophysical Research Communications, 2017, 487, 517-524.	1.0	14

#	Article	IF	CITATIONS
73	Physical activity and risk of prostate and bladder cancer in China: The South and East China case-control study on prostate and bladder cancer. PLoS ONE, 2017, 12, e0178613.	1.1	14
74	TFEB Promotes Prostate Cancer Progression via Regulating ABCA2-Dependent Lysosomal Biogenesis. Frontiers in Oncology, 2021, 11, 632524.	1.3	14
75	Decreased expression of TCF12 contributes to progression and predicts biochemical recurrence in patients with prostate cancer. Tumor Biology, 2017, 39, 101042831770392.	0.8	13
76	Increased expression of immediate early response gene 3 protein promotes aggressive progression and predicts poor prognosis in human bladder cancer. BMC Urology, 2018, 18, 82.	0.6	13
77	Downregulation of ARID4A and ARID4B promote tumor progression and directly regulated by microRNAâ€30d in patient with prostate cancer. Journal of Cellular Biochemistry, 2018, 119, 7245-7255.	1.2	13
78	Comprehensive Evaluation of Machine Learning Models and Gene Expression Signatures for Prostate Cancer Prognosis Using Large Population Cohorts. Cancer Research, 2022, 82, 1832-1843.	0.4	13
79	Extracellular matrix metalloproteinase inducer expression has an impact on survival in human bladder cancer. Cancer Epidemiology, 2010, 34, 478-482.	0.8	12
80	Functional classification of prostate cancer‑associated miRNAs through CRISPR/Cas9‑mediated gene knockout. Molecular Medicine Reports, 2020, 22, 3777-3784.	1.1	12
81	Upregulation of Holliday junction recognition protein predicts poor prognosis and biochemical recurrence in patients with prostate cancer. Oncology Letters, 2019, 18, 6697-6703.	0.8	12
82	Clinicopathological characteristics of localized prostate cancer in younger men agedÂâ‰Â50Âyears treated with radical prostatectomy in the PSA era: A systematic review and metaâ€analysis. Cancer Medicine, 2020, 9, 6473-6484.	1.3	11
83	Inference of Chromosome-Length Haplotypes Using Genomic Data of Three or a Few More Single Gametes. Molecular Biology and Evolution, 2020, 37, 3684-3698.	3.5	11
84	Overexpression of SLC6A1 associates with drug resistance and poor prognosis in prostate cancer. BMC Cancer, 2020, 20, 289.	1.1	11
85	Novel immuneâ€related signature for risk stratification and prognosis in prostatic adenocarcinoma. Cancer Science, 2021, 112, 4365-4376.	1.7	11
86	Prediction of Biochemical Recurrence-Free Survival of Prostate Cancer Patients Leveraging Multiple Gene Expression Profiles in Tumor Microenvironment. Frontiers in Oncology, 2021, 11, 632571.	1.3	11
87	Aberrant activation of Hedgehog pathway in Nasopharyngeal carcinoma. Clinical and Experimental Medicine, 2013, 13, 315-322.	1.9	10
88	Expression of aromatase in tumor related stroma is associated with human bladder cancer progression. Cancer Biology and Therapy, 2018, 19, 175-180.	1.5	10
89	miR‑505 suppresses prostate cancer progression by targeting NRCAM. Oncology Reports, 2019, 42, 991-1004.	1.2	10
90	Increasing of FKBP9 can predict poor prognosis in patients with prostate cancer. Pathology Research and Practice, 2020, 216, 152732.	1.0	10

#	Article	IF	Citations
91	ARNTâ€dependent CCR8 reprogrammed LDH isoform expression correlates with poor clinical outcomes of prostate cancer. Molecular Carcinogenesis, 2020, 59, 897-907.	1.3	10
92	Association between allergic conditions and risk of prostate cancer: A Prisma-Compliant Systematic Review and Meta-Analysis. Scientific Reports, 2016, 6, 35682.	1.6	9
93	Identification of Potent Chloride Intracellular Channel Protein 1 Inhibitors from Traditional Chinese Medicine through Structure-Based Virtual Screening and Molecular Dynamics Analysis. BioMed Research International, 2017, 2017, 1-10.	0.9	9
94	Increased intracellular Clâ° concentration mediates Trichomonas vaginalis-induced inflammation in the human vaginal epithelium. International Journal for Parasitology, 2019, 49, 697-704.	1.3	9
95	The ALDOA Metabolism Pathway as a Potential Target for Regulation of Prostate Cancer Proliferation. OncoTargets and Therapy, 2021, Volume 14, 3353-3366.	1.0	9
96	Genome-Scale CRISPR-Cas9 Transcriptional Activation Screening in Metformin Resistance Related Gene of Prostate Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 616332.	1.8	9
97	Differential Expression of E2F Transcription Factors and Their Functional and Prognostic Roles in Human Prostate Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, 831329.	1.8	9
98	Percutaneous nephrolithotomy for renal stones following failed extracorporeal shockwave lithotripsy: different performances and morbidities. Urolithiasis, 2013, 41, 165-168.	1.2	8
99	Association between Single Nucleotide Polymorphism of Vitamin D Receptor Gene Fokl Polymorphism and Clinical Progress of Benign Prostatic Hyperplasia. Scientific World Journal, The, 2015, 2015, 1-5.	0.8	8
100	Aberrant hypomethylation-mediated CD147 overexpression promotes aggressive tumor progression in human prostate cancer. Oncology Reports, 2015, 33, 2648-2654.	1.2	8
101	Preoperative evaluation of renal artery anatomy using computed tomography angiography to guide the superselective clamping of renal arterial branches during a laparoscopic partial nephrectomy. Experimental and Therapeutic Medicine, 2015, 10, 139-144.	0.8	7
102	Offsetting Expression Profiles of Prognostic Markers in Prostate Tumor vs. Its Microenvironment. Frontiers in Oncology, 2019, 9, 539.	1.3	7
103	Modeling the Complex Exposure History of Smoking in Predicting Bladder Cancer. Epidemiology, 2019, 30, 458-465.	1.2	7
104	Protective effect of ganoderan on renal damage in rats with chronic glomerulonephritis. Clinical and Investigative Medicine, 2008, 31, 212.	0.3	7
105	Lentivirus-mediated RNAi knockdown of prostate-specific membrane antigen suppresses growth, reduces migration ability and the invasiveness of prostate cancer cells. Medical Oncology, 2011, 28, 878-887.	1.2	6
106	Classical and Alternative Nuclear Factor-κB Pathways: A Comparison among Normal Prostate, Benign Prostate Hyperplasia and Prostate Cancer. Pathology and Oncology Research, 2011, 17, 873-878.	0.9	6
107	<p>Carbon Nanospheres Exert Antitumor Effects Associated with Downregulation of 4E-BP1 Expression on Prostate Cancer</p> . International Journal of Nanomedicine, 2020, Volume 15, 5545-5559.	3.3	6
108	Value of CT angiography in reducing the risk of hemorrhage associated with mini-percutaneous nephrolithotomy. International Braz J Urol: Official Journal of the Brazilian Society of Urology, 2015, 41, 690-696.	0.7	5

#	Article	IF	Citations
109	Effect of alpha1-blockers on stentless ureteroscopic lithotripsy. International Braz J Urol: Official Journal of the Brazilian Society of Urology, 2016, 42, 101-106.	0.7	5
110	Disulfiramâ€copper activates chloride currents and induces apoptosis with tyrosine kinase in prostate cancer cells. Asia-Pacific Journal of Clinical Oncology, 2021, , .	0.7	4
111	KIF4A: A potential biomarker for prediction and prognostic of prostate cancer. Clinical and Investigative Medicine, 2020, 43, E49-59.	0.3	4
112	Functionalized Silver Nanoparticles Enhance Therapeutic Effect of Paclitaxel for Prostate Cancer Therapy by Arresting the Cellular Cycle and Producing ROS. Nano, 0, , .	0.5	4
113	Characterization of a Pyroptosis-Related Signature for Prognosis Prediction and Immune Microenvironment Infiltration in Prostate Cancer. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-51.	0.7	4
114	Identification and Validation of a PPP1R12A-Related Five-Gene Signature Associated With Metabolism to Predict the Prognosis of Patients With Prostate Cancer. Frontiers in Genetics, 2021, 12, 703210.	1.1	3
115	Genome-Wide CRISPR-Cas9 Screening and Identification of Potential Genes Promoting Prostate Cancer Growth and Metastasis. Current Cancer Drug Targets, 2023, 23, 71-86.	0.8	3
116	Mannose inhibits the growth of prostate cancer through a mitochondrial mechanism. Asian Journal of Andrology, 2022, .	0.8	2
117	Treatment of lower urethral calculi with extracorporeal shock-wave lithotripsy and pneumatic ureteroscopic lithotripsy: a comparison of effectiveness and complications. Chinese Medical Journal, 2003, 116, 1001-3.	0.9	2
118	The prognostic roles of CYP19A1 expression in bladder cancer patients of different genders. Translational Andrology and Urology, 2021, 10, 3579-3590.	0.6	1
119	Analysis of the Role of Comprehensive Treatment Model in the Treatment of Prostate Cancer. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-7.	0.7	1
120	DCUN1D1 promotes tumor progress in prostate cancer and its effect on DU145 in vitro. JPMA the Journal of the Pakistan Medical Association, 2021, 71, 1-16.	0.1	1
121	cDNA macroarray for analysis of gene expression profiles in prostate cancer. Chinese Medical Journal, 2006, 119, 570-3.	0.9	1
122	Tumor Suppressor Role and Clinical Significance of the FEV Gene in Prostate Cancer. Disease Markers, 2022, 2022, 1-14.	0.6	1
123	Clinical significance of telomerase activity and peripheral venous blood CK-20 expression in bladder transitional cell carcinoma. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2003, 15, 132-135.	0.7	0
124	A clinical study on prostate cancer diagnosis with cDNA macroarray. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2005, 17, 66-70.	0.7	0
125	The study of multiple diagnosis models of human prostate cancer based on Taylor database by artificial neural networks. Journal of the Chinese Medical Association, 2020, 83, 471-477.	0.6	0
126	A 32-gene risk index: a new prognostic approach for prostate cancer progression. Asian Journal of Andrology, 2013, 15, 590-591.	0.8	0