Liang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2600389/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dual-Band Antenna With Large Beam Steering Angle Incorporating Endfire and Frequency Scanning Modes Using Double-Layer SSPPs Structure. IEEE Transactions on Antennas and Propagation, 2022, 70, 46-55.	3.1	10
2	Phase Shift Techniques for Improving Varactor-Less QVCO Based on Rotated-Phase-Tuning. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 279-283.	2.2	3
3	Beam Manipulation of Antenna With Large Frequency-Scanning Angle Based on Field Confinement of Spoof Surface Plasmon Polaritons. IEEE Transactions on Antennas and Propagation, 2022, 70, 3022-3027.	3.1	17
4	Miniaturized Periodicity Broadband Absorber With Via-Based Hybrid Metal-Graphene Structure for Large-Angle RCS Reduction. IEEE Transactions on Antennas and Propagation, 2022, 70, 2832-2840.	3.1	24
5	High selective <scp>parallelâ€scheme</scp> filtering antenna synthesized by transversal coupling matrix. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32, .	0.8	1
6	Flexible frequency-selective rasorber based on metal-graphene hybrid metamaterial. Optics Express, 2022, 30, 6566.	1.7	11
7	High-Selectivity Bandpass Filter with Controllable Attenuation Based on Graphene Nanoplates. Materials, 2022, 15, 1694.	1.3	0
8	Single-layer absorption-diffusion-integrated metasurface for high-performance radar cross section reduction using hybrid copper–graphene structure. Journal of Applied Physics, 2022, 131, .	1.1	5
9	A 26–31 GHz Linearized Wideband CMOS LNA Using Post-Distortion Technique. IEEE Microwave and Wireless Components Letters, 2022, 32, 1087-1090.	2.0	6
10	A 22.2-GHz Injection-Locked Frequency Tripler Featuring Dual Injection and 39.4% Locking Range. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 3548-3556.	2.9	2
11	A Millimeter-Wave Variable-Gain Power Amplifier With Pâ,•dB Improvement Technique in 65-nm CMOS. IEEE Microwave and Wireless Components Letters, 2022, 32, 1427-1430.	2.0	1
12	Via-based miniaturized rasorber using graphene films. Journal of Applied Physics, 2022, 131, 214504.	1.1	3
13	Low Profile Reflective Polarization Conversion Metasurface With High Frequency Selectivity. IEEE Transactions on Antennas and Propagation, 2022, 70, 10614-10622.	3.1	15
14	A <scp>30â€GHz</scp> lowâ€power <scp>CMOS LNA</scp> for <scp>5G</scp> communication systems. Microwave and Optical Technology Letters, 2021, 63, 746-752.	0.9	5
15	Compact <scp>dualâ€mode</scp> wideband <scp>MIMO</scp> filtering antenna array with high selectivity and improved isolation. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31, e22497.	0.8	5
16	High-Gain SIW Filtering Antenna With Low H-Plane Cross Polarization and Controllable Radiation Nulls. IEEE Transactions on Antennas and Propagation, 2021, 69, 2336-2340.	3.1	35
17	Dual-band beam steering THz antenna using active frequency selective surface based on graphene. EPJ Applied Metamaterials, 2021, 8, 12.	0.8	7
18	Two-Dimensional Highly Sensitive Wireless Displacement Sensor With Bilayer Graphene-Based Frequency Selective Surface. IEEE Sensors Journal, 2021, 21, 23889-23897.	2.4	6

#	Article	lF	CITATIONS
19	A 9.8–30.1 GHz CMOS low-noise amplifier with a 3.2-dB noise figure using inductor- and transformer-based gm-boosting techniques. Frontiers of Information Technology and Electronic Engineering, 2021, 22, 586-598.	1.5	3
20	Synthesis and Design of Filtering Antenna With Flexible Passband and Radiation Null Based on Parallel Scheme. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 838-842.	2.4	4
21	A CMOS Low-Power Variable-Gain LNA Based on Triple Cascoded Common-Source Amplifiers and Forward-Body-Bias Technology. , 2021, , .		3
22	A transformerâ€based injectionâ€locked frequency divider. Microwave and Optical Technology Letters, 2021, 63, 2565-2569.	0.9	0
23	A Low-Profile Ultrawideband Antenna Based on Flexible Graphite Films for On-Body Wearable Applications. Materials, 2021, 14, 4526.	1.3	8
24	Controllable Design of Filtering Attenuators Based on Graphene Integrated Dual-Mode Microstrip Resonator. , 2021, , .		5
25	Wideband and High-Gain Wearable Antenna Array with Specific Absorption Rate Suppression. Electronics (Switzerland), 2021, 10, 2056.	1.8	10
26	An Ultrawideband Polarization-Insensitive Diffusion Metasurface Using Period Changed Unit Cell for RCS Reduction. Materials, 2021, 14, 5053.	1.3	4
27	Wideband SIW Filtering Antenna With Controllable Radiation Nulls Using Dual-Mode Cavities. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 1799-1803.	2.4	24
28	A 15–38 GHz Vector-Summing Phase-Shifter With 360° Phase-Shifting Range Using Improved I/Q Generator. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 3199-3203.	2.2	10
29	Pattern-Reconfigurable Antenna With Three Switchable Beams Based on Graphene. , 2021, , .		0
30	A Low-Profile Omnidirectional Ultra-Wideband Planar Monopole Antenna Based on Highly Conductive Graphene Film. , 2021, , .		0
31	A 3.5GHz CMOS Transceiver for Sub-6GHz and Mm-Wave Co-Existed 5G Communication Systems. , 2021, , .		1
32	A 6.3-8.7 GHz Phase-Locked Loop in 65nm CMOS. , 2021, , .		0
33	A low profile tunable microwave absorber based on graphene sandwich structure and high impedance surface. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30, e22022.	0.8	13
34	Millimeter-Wave Pattern Reconfigurable Vivaldi Antenna Using Tunable Resistor Based on Graphene. IEEE Transactions on Antennas and Propagation, 2020, 68, 4939-4943.	3.1	62
35	Dynamically Tunable Filtering Attenuator Based on Graphene Integrated Microstrip Resonators. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 5270-5278.	2.9	22
36	An inline pseudoelliptic selfâ€packaging substrate integrated suspended line filter with mixed electric and magnetic coupling. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30, e22281.	0.8	0

#	Article	IF	CITATIONS
37	Low-Loss Dual-Polarized Frequency-Selective Rasorber With Graphene-Based Planar Resistor. IEEE Transactions on Antennas and Propagation, 2020, 68, 7439-7446.	3.1	31
38	Miniaturized Half-Mode Fan-Shaped SIW Filter With Extensible Order and Wide Stopband. IEEE Microwave and Wireless Components Letters, 2020, 30, 749-752.	2.0	24
39	Dual-band dual-polarization reconfigurable THz antenna based on graphene. Applied Physics Express, 2020, 13, 075007.	1.1	13
40	Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging. Carbon, 2020, 163, 34-42.	5.4	113
41	A Dynamically Tunable Microwave Absorber Based on Graphene. IEEE Transactions on Antennas and Propagation, 2020, 68, 4706-4713.	3.1	35
42	Wideband Circularly Polarized Magneto-Electric Dipole \$1imes2\$ Antenna Array for Millimeter-Wave Applications. IEEE Access, 2020, 8, 27516-27523.	2.6	9
43	Dynamically Tunable Integrated Device for Attenuation, Amplification, and Transmission of SSPP Using Graphene. IEEE Transactions on Antennas and Propagation, 2020, 68, 3953-3962.	3.1	18
44	Circularly Polarized Wearable Antenna With Low Profile and Low Specific Absorption Rate Using Highly Conductive Graphene Film. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 2354-2358.	2.4	47
45	A 21-41 GHz Compact Wideband Low-Noise Amplifier Based on Transformer-Feedback Technique in 65-nm CMOS. , 2020, , .		1
46	Broadband Leaky-Wave Antenna with Large Scanning Angle Incorporating Spoof Surface Plasmon Polaritons and Graphene. , 2020, , .		0
47	Graphene-based Beam Steering Antenna. , 2020, , .		2
48	Holographic design of leakyâ€wave antenna with gain controlled four beams. Microwave and Optical Technology Letters, 2019, 61, 638-643.	0.9	3
49	Dual-frequency-scanning broadband antenna based on Z-shape spoof surface plasmon polaritons. Applied Physics Express, 2019, 12, 084001.	1.1	14
50	A Miniaturized SIW Triplexer Based on a Triple-Mode Resonator with Slot Perturbation. , 2019, , .		4
51	Electromagnetic shielding and multi-beam radiation with high conductivity multilayer graphene film. Carbon, 2019, 155, 506-513.	5.4	60
52	Compact tunable cavity filter with high selectivity using doubleâ€layer suspended stripline resonator. Microwave and Optical Technology Letters, 2019, 61, 1177-1180.	0.9	0
53	A Double-Layer Wideband Transmitarray Antenna Using Two Degrees of Freedom Elements Around 20 GHz. IEEE Transactions on Antennas and Propagation, 2019, 67, 2798-2802.	3.1	61
54	Wideband balun filtering quasi‥agi antenna with high selectivity. Microwave and Optical Technology Letters, 2019, 61, 2336-2341.	0.9	7

#	Article	IF	CITATIONS
55	Tunable Grounded Coplanar Waveguide Attenuator Based on Graphene Nanoplates. IEEE Microwave and Wireless Components Letters, 2019, 29, 330-332.	2.0	36
56	Ultrathin and flexible directional coupler with arbitrary coupling level using s-shaped spoof surface plasmon polariton coupled-line. Applied Physics Express, 2019, 12, 054005.	1.1	9
57	Flexible and Dynamically Tunable Attenuator Based on Spoof Surface Plasmon Polaritons Waveguide Loaded With Graphene. IEEE Transactions on Antennas and Propagation, 2019, 67, 5582-5589.	3.1	29
58	Flexible wideband power divider with high isolation incorporating spoof surface plasmon polaritons transition with graphene flake. Applied Physics Express, 2019, 12, 022008.	1.1	15
59	Doubleâ€layer microstrip ultraâ€wideband filtering power divider with high selectivity and large isolation. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29, e21726.	0.8	2
60	Design of pseudoelliptic filters with controllable transmission zeros using high― <i>Q</i> doubleâ€layer suspended stripline resonators. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29, e21785.	0.8	1
61	A Double-Layer Highly Efficient and Wideband Transmitarray Antenna. IEEE Access, 2019, 7, 23285-23290.	2.6	34
62	Dynamically Tunable Four Band Filtering Attenuator Based on Graphene Integrated Microstrip Multi-mode Resonator. , 2019, , .		2
63	A Transformer-based Injection-Locked Frequency Divider in 65-nm CMOS Technology. , 2019, , .		2
64	Flexible Microwave Devices and Dual-frequency-scanning Antenna Based on Spoof Surface Plasmon Polaritons. , 2019, , .		3
65	Design and Validation of Flexible Multilayer Frequency Selective Surface With Transmission Zeros. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 250-254.	2.4	10
66	X/Ku Dual-Band Single-Layer Reflectarray Antenna. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 338-342.	2.4	47
67	Doubleâ€layer suspended stripline resonator with high quality factor for baseâ€station diplexer application. Electronics Letters, 2018, 54, 513-515.	0.5	4
68	A High-Q Miniaturized Suspended Stripline Resonator for Pseudoelliptic Filter Design. IEEE Access, 2018, 6, 64784-64789.	2.6	0
69	Experimental Demonstration of Microwave Absorber Using Large-Area Multilayer Graphene-Based Frequency Selective Surface. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 3807-3816.	2.9	82
70	Large angle beam steering THz antenna using active frequency selective surface based on hybrid graphene-gold structure. Optics Express, 2018, 26, 15353.	1.7	38
71	Compact Nine-Way Power Divider With Omnidirectional Resistor Based on Graphene Flake. IEEE Microwave and Wireless Components Letters, 2018, 28, 762-764.	2.0	17
72	Unidirectional invisibility induced by parity-time symmetric circuit. Scientific Reports, 2017, 7, 40575.	1.6	8

#	Article	IF	CITATIONS
73	Tunable dualâ€mode dualâ€band filter with constant bandwidth and high selectivity. Microwave and Optical Technology Letters, 2017, 59, 283-285.	0.9	6
74	<scp>T</scp> unable dualâ€band filtering power divider with constant bandwidth and high selectivity. Microwave and Optical Technology Letters, 2017, 59, 2813-2816.	0.9	4
75	Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface. Optics Express, 2017, 25, 7161.	1.7	140
76	High-Performance Wireless Ammonia Gas Sensors Based on Reduced Graphene Oxide and Nano-Silver Ink Hybrid Material Loaded on a Patch Antenna. Sensors, 2017, 17, 2070.	2.1	37
77	Transparent electromagnetic shielding enclosure with CVD graphene. Applied Physics Letters, 2016, 109, .	1.5	17
78	SIW Butler Matrix with Modified Hybrid Coupler for Slot Antenna Array. IEEE Access, 2016, 4, 9561-9569.	2.6	83
79	Realization of graphene-based transparent cylinder shielding enclosure. , 2016, , .		0
80	Tunable quad-band duplexer using short-ended stub-loaded SIR. , 2016, , .		0
81	Photoexited switchable metamaterial absorber at terahertz frequencies. Optics Communications, 2015, 344, 125-128.	1.0	45
82	Multimode wideband diplexer using open―and shortâ€ended stubâ€loaded hairpin resonator. Microwave and Optical Technology Letters, 2015, 57, 1096-1099.	0.9	1
83	Quadâ€band filter with high skirt selectivity using stubâ€loaded nested dualâ€open loop resonators. Electronics Letters, 2015, 51, 166-168.	0.5	16
84	Material region division and antenna application of monolayer and multilayer graphene. , 2014, , .		3
85	Phase variation of multilayer CVD graphene. , 2014, , .		0
86	Compact sixâ€band triplexer using stubâ€loaded stepped impedance resonators. Electronics Letters, 2014, 50, 1143-1145.	0.5	8
87	Microwave absorption and radiation from large-area multilayer CVD graphene. Carbon, 2014, 77, 814-822.	5.4	68
88	Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz. Scientific Reports, 2014, 4, 4130.	1.6	196
89	Compact Microstrip Dual-Band Bandpass Filter Using a Novel Stub-Loaded Quad-Mode Resonator. IEEE Microwave and Wireless Components Letters, 2013, 23, 465-467.	2.0	59
90	Shorted-Ended Stepped-Impedance Dual-Resonance Resonator and Its Application to Bandpass Filters. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 3209-3215.	2.9	37

#	Article	IF	CITATIONS
91	Compact UWB bandpass filter with dual notched bands using cascaded shorted-stub loaded SIRS. , 2013, , .		2
92	A novel quad-band filter using centrally shorted-stub loaded resonator and stepped impedance resonator. , 2012, , .		0
93	Novel dual-mode bandpass filter using slot-line square loop resonator. , 2012, , .		4
94	Dual-band filter based on dual-stubs loaded square loop resonator. , 2012, , .		3
95	Wideband Dual-Mode Microstrip Filter Using Short-Ended Resonator With Centrally Loaded Inductive Stub. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 3667-3673.	2.9	31
96	A compact hexagonal dualâ€band substrate integrated waveguide filter based on extractedâ€pole technique. Microwave and Optical Technology Letters, 2011, 53, 562-565.	0.9	12
97	Analytical design of novel tripleâ€passband microwave filters using frequency transformations method. Microwave and Optical Technology Letters, 2011, 53, 2199-2201.	0.9	1
98	Wideband cross oupled filter using defected stepped impedance resonator. Microwave and Optical Technology Letters, 2010, 52, 558-561.	0.9	1
99	Trisection cross-coupled filter with symmetrical response using split-ring resonator DCS. Microwave and Optical Technology Letters, 2008, 50, 1774-1776.	0.9	1
100	Compact Dual-Band Filter Using Defected Stepped Impedance Resonator. IEEE Microwave and Wireless Components Letters, 2008, 18, 674-676.	2.0	50
101	Design of lowpass filter using a novel split-ring resonator defected ground structure. Microwave and Optical Technology Letters, 2007, 49, 288-291.	0.9	28
102	Ultra wideband filter design based on composite right…leftâ€handed transmission line. Microwave and Optical Technology Letters, 2007, 49, 2379-2381.	0.9	11
103	Leftâ€handed characteristic analysis of a splitâ€ring resonator defected ground structure transmisson line. Microwave and Optical Technology Letters, 2007, 49, 2599-2602.	0.9	Ο