Zhekang Ying

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/260036/publications.pdf Version: 2024-02-01

ZHERANC YINC

#	Article	IF	CITATIONS
1	Particulate Matter Exposure and Stress Hormone Levels. Circulation, 2017, 136, 618-627.	1.6	364
2	Effect of Early Particulate Air Pollution Exposure on Obesity in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2518-2527.	2.4	254
3	Air Pollution–Mediated Susceptibility to Inflammation and Insulin Resistance: Influence of CCR2 Pathways in Mice. Environmental Health Perspectives, 2014, 122, 17-26.	6.0	168
4	Long-Term Exposure to Concentrated Ambient PM _{2.5} Increases Mouse Blood Pressure through Abnormal Activation of the Sympathetic Nervous System: A Role for Hypothalamic Inflammation. Environmental Health Perspectives, 2014, 122, 79-86.	6.0	161
5	Exposure to concentrated ambient PM2.5 alters the composition of gut microbiota in a murine model. Particle and Fibre Toxicology, 2018, 15, 17.	6.2	112
6	Air pollution and cardiac remodeling: a role for RhoA/Rho-kinase. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1540-H1550.	3.2	109
7	Ambient Particulates Alter Vascular Function through Induction of Reactive Oxygen and Nitrogen Species. Toxicological Sciences, 2009, 111, 80-88.	3.1	103
8	Evidence that $\hat{l}\pm$ -lipoic acid inhibits NF- $\hat{l}^{\circ}B$ activation independent of its antioxidant function. Inflammation Research, 2011, 60, 219-225.	4.0	79
9	Central IKKβ inhibition prevents air pollution mediated peripheral inflammation and exaggeration of type II diabetes. Particle and Fibre Toxicology, 2014, 11, 53.	6.2	78
10	Lipoic acid effects on established atherosclerosis. Life Sciences, 2010, 86, 95-102.	4.3	64
11	PYK2/PDZ-RhoGEF Links Ca2+Signaling to RhoA. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1657-1663.	2.4	58
12	Exposure to Concentrated Ambient PM2.5 Compromises Spermatogenesis in a Mouse Model: Role of Suppression of Hypothalamus-Pituitary-Gonads Axis. Toxicological Sciences, 2018, 162, 318-326.	3.1	55
13	Metabolomics analysis of a mouse model for chronic exposure to ambient PM2.5. Environmental Pollution, 2019, 247, 953-963.	7.5	51
14	Increaseed expression of mRNA for regulator of G protein signaling domain?containing Rho guanine nucleotide exchange factors in aorta from stroke-prone spontaneously hypertensive rats. American Journal of Hypertension, 2004, 17, 981-985.	2.0	46
15	Angiotensin II Up-Regulates the Leukemia-Associated Rho Guanine Nucleotide Exchange Factor (RhoGEF), a Regulator of G Protein Signaling Domain-Containing RhoGEF, in Vascular Smooth Muscle Cells. Molecular Pharmacology, 2006, 69, 932-940.	2.3	45
16	The acute effects of fine particulate matter constituents on circulating inflammatory biomarkers in healthy adults. Science of the Total Environment, 2020, 707, 135989.	8.0	44
17	Concentrated Ambient PM2.5-Induced Inflammation and Endothelial Dysfunction in a Murine Model of Neural IKK2 Deficiency. Environmental Health Perspectives, 2018, 126, 027003.	6.0	39
18	LRP1 (Low-Density Lipoprotein Receptor–Related Protein 1) Regulates Smooth Muscle Contractility by Modulating Ca ²⁺ Signaling and Expression of Cytoskeleton-Related Proteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2651-2664.	2.4	37

ZHEKANG YING

#	Article	IF	CITATIONS
19	Particulate Air pollution mediated effects on insulin resistance in mice are independent of CCR2. Particle and Fibre Toxicology, 2017, 14, 6.	6.2	35
20	Programming of mouse obesity by maternal exposure to concentrated ambient fine particles. Particle and Fibre Toxicology, 2017, 14, 20.	6.2	34
21	Exposure to concentrated ambient particulate matter induces reversible increase of heart weight in spontaneously hypertensive rats. Particle and Fibre Toxicology, 2015, 12, 15.	6.2	33
22	Repeated ozone exposure exacerbates insulin resistance and activates innate immune response in genetically susceptible mice. Inhalation Toxicology, 2016, 28, 383-392.	1.6	31
23	Exposure to Concentrated Ambient PM2.5Shortens Lifespan and Induces Inflammation-Associated Signaling and Oxidative Stress in Drosophila. Toxicological Sciences, 2017, 156, kfw240.	3.1	30
24	Prenatal and postnatal mothering by diesel exhaust PM2.5-exposed dams differentially program mouse energy metabolism. Particle and Fibre Toxicology, 2017, 14, 3.	6.2	30
25	Particulate air pollution and ischemic stroke hospitalization: How the associations vary by constituents in Shanghai, China. Science of the Total Environment, 2019, 695, 133780.	8.0	30
26	The effects of fine particulate matter constituents on exhaled nitric oxide and DNA methylation in the arginase–nitric oxide synthase pathway. Environment International, 2019, 131, 105019.	10.0	29
27	Salicylates dilate blood vessels through inhibiting PYK2-mediated RhoA/Rho-kinase activation. Cardiovascular Research, 2009, 83, 155-162.	3.8	28
28	Deletion of interleukin 1 receptor-associated kinase 1 (Irak1) improves glucose tolerance primarily by increasing insulin sensitivity in skeletal muscle. Journal of Biological Chemistry, 2017, 292, 12339-12350.	3.4	28
29	Associations between fine particulate matter constituents and daily cardiovascular mortality in Shanghai, China. Ecotoxicology and Environmental Safety, 2020, 191, 110154.	6.0	22
30	Alpha-lipoic acid activates eNOS through activation of PI3-kinase/Akt signaling pathway. Vascular Pharmacology, 2015, 64, 28-35.	2.1	21
31	Prenatal exposure to diesel exhaust PM _{2.5} causes offspring β cell dysfunction in adulthood. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E72-E80.	3.5	20
32	Inactivation of TNF/LT locus alters mouse metabolic response to concentrated ambient PM2.5. Toxicology, 2017, 390, 100-108.	4.2	19
33	Developmental programming of obesity by maternal exposure to concentrated ambient PM2.5 is maternally transmitted into the third generation in a mouse model. Particle and Fibre Toxicology, 2019, 16, 27.	6.2	18
34	Inhibitor κB Kinase 2 Is a Myosin Light Chain Kinase in Vascular Smooth Muscle. Circulation Research, 2013, 113, 562-570.	4.5	16
35	Exposure to different fractions of diesel exhaust PM2.5 induces different levels of pulmonary inflammation and acute phase response. Ecotoxicology and Environmental Safety, 2021, 210, 111871.	6.0	14
36	Subacute inhalation exposure to ozone induces systemic inflammation but not insulin resistance in a diabetic mouse model. Inhalation Toxicology, 2016, 28, 155-163.	1.6	13

ZHEKANG YING

#	Article	IF	CITATIONS
37	Chronic exposure to diesel exhaust particulate matter impairs meiotic progression during spermatogenesis in a mouse model. Ecotoxicology and Environmental Safety, 2020, 202, 110881.	6.0	12
38	Hypothalamic-pituitary-adrenal axis mediates ambient PM2.5 exposure-induced pulmonary inflammation. Ecotoxicology and Environmental Safety, 2021, 208, 111464.	6.0	12
39	Dual regulation of tumor necrosis factor- $\hat{1}\pm$ on myosin light chain phosphorylation in vascular smooth muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H398-H406.	3.2	11
40	Paternal Exposure to PM _{2.5} Programs Offspring's Energy Homeostasis. Environmental Science & Technology, 2021, 55, 6097-6106.	10.0	10
41	PM2.5 Exposure of Mice during Spermatogenesis: A Role of Inhibitor κB Kinase 2 in Pro-Opiomelanocortin Neurons. Environmental Health Perspectives, 2021, 129, 97006.	6.0	10
42	Lipoicmethylenedioxyphenol Reduces Experimental Atherosclerosis through Activation of Nrf2 Signaling. PLoS ONE, 2016, 11, e0148305.	2.5	10
43	Decreased Taurine and Creatine in the Thalamus May Relate to Behavioral Impairments in Ethanol-Fed Mice: A Pilot Study of Proton Magnetic Resonance Spectroscopy. Molecular Imaging, 2018, 17, 153601211774905.	1.4	9
44	Glucose Homeostasis following Diesel Exhaust Particulate Matter Exposure in a Lung Epithelial Cell-Specific IKK2-Deficient Mouse Model. Environmental Health Perspectives, 2019, 127, 057009.	6.0	8
45	The Social and Natural Environment's Impact on SARS-CoV-2 Infections in the UK Biobank. International Journal of Environmental Research and Public Health, 2022, 19, 533.	2.6	7
46	From the Cover: Lung-Specific Overexpression of Constitutively Active IKK2 Induces Pulmonary and Systemic Inflammations but Not Hypothalamic Inflammation and Glucose Intolerance. Toxicological Sciences, 2017, 160, 4-14.	3.1	6
47	TNF signaling impacts glucagon-like peptide-1 expression and secretion. Journal of Molecular Endocrinology, 2018, 61, 153-161.	2.5	6
48	cis-4-[18F]fluoro-L-proline Molecular Imaging Experimental Liver Fibrosis. Frontiers in Molecular Biosciences, 2020, 7, 90.	3.5	6
49	Liver Fibrosis Conventional and Molecular Imaging Diagnosis Update. Journal of Liver, 2019, 8, .	0.3	6
50	Differential Roles of Water-Insoluble and Water-Soluble Fractions of Diesel Exhaust Particles in the Development of Adverse Health Effects Due to Chronic Instillation of Diesel Exhaust Particles. Chemical Research in Toxicology, 2021, 34, 2450-2459.	3.3	6
51	Personal exposure to fine particulate matter and blood pressure: Variations by particulate sources. Chemosphere, 2021, 280, 130602.	8.2	5
52	RRY Inhibits Amyloid-β1–42 Peptide Aggregation and Neurotoxicity. Journal of Alzheimer's Disease Reports, 2021, 5, 479-495.	2.2	4
53	Intermittent fasting ameliorates PM2.5 exposure-induced abnormalities in glycaemic control. Toxicology and Applied Pharmacology, 2020, 404, 115181.	2.8	1
54	Quantification of Hepatic Lipid Using 7.0T Proton Magnetic Resonance Spectroscopy and Computed Tomography in Mild Alcoholic Steatotic Mice. Journal of Liver, 2018, 07, .	0.3	0