Nasir Alfaraj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2600341/publications.pdf

Version: 2024-02-01

759233 713466 27 499 12 21 citations h-index g-index papers 27 27 27 709 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Heteroepitaxial βâ€Ga ₂ O ₃ on Conductive Ceramic Templates: Toward Ultrahigh Gain Deepâ€Ultraviolet Photodetection. Advanced Materials Technologies, 2021, 6, 2100142.	5.8	10
2	Heteroepitaxial βâ€Ga ₂ O ₃ on Conductive Ceramic Templates: Toward Ultrahigh Gain Deepâ€Ultraviolet Photodetection (Adv. Mater. Technol. 9/2021). Advanced Materials Technologies, 2021, 6, 2170052.	5.8	0
3	Silicon-integrated monocrystalline oxide–nitride heterostructures for deep-ultraviolet optoelectronics. Optical Materials Express, 2021, 11, 4130.	3.0	4
4	Time–Energy Quantum Uncertainty: Quantifying the Effectiveness of Surface Defect Passivation Protocols for Low-Dimensional Semiconductors. ACS Applied Electronic Materials, 2020, 2, 409-418.	4.3	4
5	Single-Crystalline All-Oxide α–γ–β Heterostructures for Deep-Ultraviolet Photodetection. ACS Applied Materials & Deep (Interfaces, 2020, 12, 53932-53941.	8.0	14
6	Onâ€Chip Hyperuniform Lasers for Controllable Transitions in Disordered Systems. Laser and Photonics Reviews, 2020, 14, 1800296.	8.7	10
7	Deep-Ultraviolet Photodetection Using Single-Crystalline β-Ga ₂ O ₃ /NiO Heterojunctions. ACS Applied Materials & Interfaces, 2019, 11, 35095-35104.	8.0	75
8	Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of group Ill–nitrides, Ill–oxides, and two-dimensional materials. Journal of Semiconductors, 2019, 40, 121801.	3.7	33
9	Deep-Ultraviolet \hat{l}^2 -Ga $2O3$ Photodetectors Grown on MgO Substrates with a TiN Template. , 2019 , , .		1
10	Functional integrity and stable high-temperature operation of planarized ultraviolet-A AlxGa1â^'xN/AlyGa1â^'yN multiple-quantum-disk nanowire LEDs with charge-conduction promoting interlayer., 2019,,.		3
11	Electrical characterization of solar-blind deep-ultraviolet (Al0.28Ga0.72)2O3 Schottky photodetectors grown on silicon by pulsed laser deposition. , 2019, , .		3
12	Enhanced electro-optic performance of surface-treated nanowires: origin and mechanism of nanoscale current injection for reliable ultraviolet light-emitting diodes. Optical Materials Express, 2019, 9, 203.	3.0	11
13	The effect of turbulence on NLOS underwater wireless optical communication channels [Invited]. Chinese Optics Letters, 2019, 17, 100013.	2.9	21
14	Revealing microstructure and dislocation behavior in BAIN/AIGaN heterostructures. Applied Physics Express, 2018, 11, 011001.	2.4	8
15	Observation of piezotronic and piezo-phototronic effects in n-InGaN nanowires/Ti grown by molecular beam epitaxy. Nano Energy, 2018, 54, 264-271.	16.0	18
16	Free-space optical channel characterization and experimental validation in a coastal environment. Optics Express, 2018, 26, 6614.	3.4	36
17	III-nitride nanowires on unconventional substrates: From materials to optoelectronic device applications. Progress in Quantum Electronics, 2018, 61, 1-31.	7.0	76
18	Influence of TMAI preflow on AIN epitaxy on sapphire. Applied Physics Letters, 2017, 110, 192106.	3.3	22

#	Article	IF	Citations
19	Photoinduced entropy of InGaN/GaN p-i-n double-heterostructure nanowires. Applied Physics Letters, 2017, 110, .	3.3	50
20	Structural properties, crystal quality and growth modes of MOCVD-grown AlN with TMAl pretreatment of sapphire substrate. Journal Physics D: Applied Physics, 2017, 50, 395101.	2.8	13
21	Thermodynamic photoinduced disorder in AlGaN nanowires. AIP Advances, 2017, 7, .	1.3	12
22	Out-of-Plane Strain Effects on Physically Flexible FinFET CMOS. IEEE Transactions on Electron Devices, 2016, 63, 2657-2664.	3.0	13
23	Enhanced cooling in mono-crystalline ultra-thin silicon by embedded micro-air channels. AIP Advances, 2015, 5, 127115.	1.3	10
24	Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform. Applied Physics Letters, 2015, 107, .	3.3	18
25	Out-of-plane strain effect on silicon-based flexible FinFETs. , 2015, , .		5
26	Ultra-high density out-of-plane strain sensor 3D architecture based on sub-20 nm PMOS FinFET. , 2015, , .		3
27	Nonplanar Nanoscale Fin Field Effect Transistors on Textile, Paper, Wood, Stone, and Vinyl <i>via</i> Soft Material-Enabled Double-Transfer Printing. ACS Nano, 2015, 9, 5255-5263.	14.6	26