
Marcin Majka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2600235/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nuclear magnetic resonance footprint of Wharton Jelly mesenchymal stem cells death mechanisms and distinctive inâ€cell biophysical properties in vitro. Journal of Cellular and Molecular Medicine, 2022, 26, 1501-1514.	1.6	6
2	Selective Cytotoxicity of Complexes with N,N,N-Donor Dipodal Ligand in Tumor Cells. International Journal of Molecular Sciences, 2021, 22, 1802.	1.8	10
3	Enhancement of myogenic differentiation and inhibition of rhabdomyosarcoma progression by miR-28-3p and miR-193a-5p regulated by SNAIL. Molecular Therapy - Nucleic Acids, 2021, 24, 888-904.	2.3	10
4	Myogenic Differentiation of iPS Cells Shows Different Efficiency in Simultaneous Comparison of Protocols. Cells, 2021, 10, 1671.	1.8	2
5	Progression and Differentiation of Alveolar Rhabdomyosarcoma Is Regulated by PAX7 Transcription Factor—Significance of Tumor Subclones. Cells, 2021, 10, 1870.	1.8	3
6	Highly Effective Protocol for Differentiation of Induced Pluripotent Stem Cells (iPS) into Melanin-Producing Cells. International Journal of Molecular Sciences, 2021, 22, 12787.	1.8	3
7	SNAIL Promotes Metastatic Behavior of Rhabdomyosarcoma by Increasing EZRIN and AKT Expression and Regulating MicroRNA Networks. Cancers, 2020, 12, 1870.	1.7	14
8	Origin of the Induced Pluripotent Stem Cells Affects Their Differentiation into Dopaminergic Neurons. International Journal of Molecular Sciences, 2020, 21, 5705.	1.8	12
9	The Potential of Novel Chitosan-Based Scaffolds in Pelvic Organ Prolapse (POP) Treatment through Tissue Engineering. Molecules, 2020, 25, 4280.	1.7	5
10	Carbon Fibers as a New Type of Scaffold for Midbrain Organoid Development. International Journal of Molecular Sciences, 2020, 21, 5959.	1.8	11
11	Genome Editing of the SNAI1 Gene in Rhabdomyosarcoma: A Novel Model for Studies of Its Role. Cells, 2020, 9, 1095.	1.8	5
12	Mesenchymal stem cells as a multimodal treatment for nervous system diseases. Stem Cells Translational Medicine, 2020, 9, 1174-1189.	1.6	42
13	Use of 3D Organoids as a Model to Study Idiopathic Form of Parkinson's Disease. International Journal of Molecular Sciences, 2020, 21, 694.	1.8	58
14	Interplay among SNAIL Transcription Factor, MicroRNAs, Long Non-Coding RNAs, and Circular RNAs in the Regulation of Tumor Growth and Metastasis. Cancers, 2020, 12, 209.	1.7	47
15	AFM-based Analysis of Wharton's Jelly Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2019, 20, 4351.	1.8	9
16	Regenerative Potential of the Product "CardioCell―Derived from the Wharton's Jelly Mesenchymal Stem Cells for Treating Hindlimb Ischemia. International Journal of Molecular Sciences, 2019, 20, 4632.	1.8	12
17	Molecular and Functional Verification of Wharton's Jelly Mesenchymal Stem Cells (WJ-MSCs) Pluripotency. International Journal of Molecular Sciences, 2019, 20, 1807.	1.8	36
18	The Pros and Cons of Mesenchymal Stem Cell-Based Therapies. Cell Transplantation, 2019, 28, 801-812.	1.2	281

MARCIN MAJKA

#	Article	IF	CITATIONS
19	C-Met as a Key Factor Responsible for Sustaining Undifferentiated Phenotype and Therapy Resistance in Renal Carcinomas. Cells, 2019, 8, 272.	1.8	21
20	The Importance of HLA Assessment in "Off-the-Shelf―Allogeneic Mesenchymal Stem Cells Based-Therapies. International Journal of Molecular Sciences, 2019, 20, 5680.	1.8	60
21	Secretion, migration and adhesion as key processes in the therapeutic activity of mesenchymal stem cells. Acta Biochimica Polonica, 2019, 66, 499-507.	0.3	9
22	Molecular mechanisms of epithelial to mesenchymal transition in tumor metastasis. Acta Biochimica Polonica, 2019, 66, 509-520.	0.3	56
23	Multiple Autologous Bone Marrow-Derived CD271+ Mesenchymal Stem Cell Transplantation Overcomes Drug-Resistant Epilepsy in Children. Stem Cells Translational Medicine, 2018, 7, 20-33.	1.6	30
24	SNAIL is a key regulator of alveolar rhabdomyosarcoma tumor growth and differentiation through repression of MYF5 and MYOD function. Cell Death and Disease, 2018, 9, 643.	2.7	23
25	Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1α-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma Lines. Nutrients, 2018, 10, 841.	1.7	53
26	Caffeic Acid and Metformin Inhibit Invasive Phenotype Induced by TGF-Î ² 1 in C-4I and HTB-35/SiHa Human Cervical Squamous Carcinoma Cells by Acting on Different Molecular Targets. International Journal of Molecular Sciences, 2018, 19, 266.	1.8	33
27	Introduction of Exogenous HSV-TK Suicide Gene Increases Safety of Keratinocyte-Derived Induced Pluripotent Stem Cells by Providing Genetic "Emergency Exit―Switch. International Journal of Molecular Sciences, 2018, 19, 197.	1.8	30
28	Blocking MET receptor signaling in multiple myeloma cells in vitro and in vivo. Advances in Clinical and Experimental Medicine, 2018, 27, 153-158.	0.6	1
29	Metformin and caffeic acid regulate metabolic reprogramming in human cervical carcinoma SiHa/HTB-35Âcells and augment anticancer activity of Cisplatin via cell cycle regulation. Food and Chemical Toxicology, 2017, 106, 260-272.	1.8	37
30	Suicide gene therapy of rhabdomyosarcoma. International Journal of Oncology, 2017, 50, 597-605.	1.4	11
31	Concise Review: Mesenchymal Stem Cells in Cardiovascular Regeneration: Emerging Research Directions and Clinical Applications. Stem Cells Translational Medicine, 2017, 6, 1859-1867.	1.6	92
32	MCPIP1 Downregulation in Clear Cell Renal Cell Carcinoma Promotes Vascularization and Metastatic Progression. Cancer Research, 2017, 77, 4905-4920.	0.4	60
33	Caffeic Acid Expands Anti-Tumor Effect of Metformin in Human Metastatic Cervical Carcinoma HTB-34 Cells: Implications of AMPK Activation and Impairment of Fatty Acids De Novo Biosynthesis. International Journal of Molecular Sciences, 2017, 18, 462.	1.8	49
34	Serum-resistant CpG-STAT3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia. Blood, 2016, 127, 1687-1700.	0.6	70
35	Quality of life assessment in female patients 2 and 4 years after muscle-derived cell transplants for stress urinary incontinence treatment Ginekologia Polska, 2016, 87, 183-189.	0.3	21
36	Targeting MET Receptor in Rhabdomyosarcoma: Rationale and Progress. Current Drug Targets, 2016, 18, 98-107.	1.0	12

MARCIN MAJKA

#	Article	IF	CITATIONS
37	Assessment of frequency and severity of hypomagnesemia in patients with metastatic colorectal cancer treated with cetuximab, with a review of the literature. Oncology Letters, 2015, 10, 3749-3755.	0.8	12
38	The Analysis of the Relationship between Multiple Myeloma Cells and Their Microenvironment. Journal of Cancer, 2015, 6, 160-168.	1.2	12
39	Myocardial regeneration strategy using Wharton's jelly mesenchymal stem cells as an off-the-shelf †̃unlimited' therapeutic agent: results from the Acute Myocardial Infarction First-in-Man Study. Postepy W Kardiologii Interwencyjnej, 2015, 2, 100-107.	0.1	46
40	Continuous Improvement after Multiple Mesenchymal Stem Cell Transplantations in a Patient with Complete Spinal Cord Injury. Cell Transplantation, 2015, 24, 661-672.	1.2	63
41	MET receptor is a potential therapeutic target in high grade cervical cancer. Oncotarget, 2015, 6, 10086-10101.	0.8	15
42	Constitutive activation of MET signaling impairs myogenic differentiation of rhabdomyosarcoma and progression. Oncotarget, 2015, 6, 31378-31398.	0.8	25
43	Geldanamycin and Its Derivatives Inhibit the Growth of Myeloma Cells and Reduce the Expression of the MET Receptor. Journal of Cancer, 2014, 5, 480-490.	1.2	15
44	Efficient myoblast expansion for regenerative medicine use. International Journal of Molecular Medicine, 2014, 34, 83-91.	1.8	12
45	Preliminary Study of Autologous Bone Marrow Nucleated Cells Transplantation in Children With Spinal Cord Injury. Stem Cells Translational Medicine, 2014, 3, 395-404.	1.6	29
46	Autologous muscleâ€derived cells for the treatment of female stress urinary incontinence: A 2â€year followâ€up of a polish investigation. Neurourology and Urodynamics, 2014, 33, 324-330.	0.8	80
47	Downregulation of the CXCR4 receptor inhibits cervical carcinoma metastatic behavior in vitro and in vivo. International Journal of Oncology, 2014, 44, 1853-1860.	1.4	10
48	The strategy of fusion genes construction determines efficient expression of introduced transcription factors Acta Biochimica Polonica, 2014, 61, .	0.3	6
49	The strategy of fusion genes construction determines efficient expression of introduced transcription factors. Acta Biochimica Polonica, 2014, 61, 773-8.	0.3	4
50	Infarct Size Determines Myocardial Uptake of CD34 ⁺ Cells in the Peri-Infarct Zone. Circulation: Cardiovascular Imaging, 2013, 6, 320-328.	1.3	35
51	Genetically modified adipose tissueâ^'derived mesenchymal stem cells overexpressing CXCR4 display increased motility, invasiveness, and homing to bone marrow of NOD/SCID mice. Experimental Hematology, 2011, 39, 686-696.e4.	0.2	85
52	Randomized transcoronary delivery of CD34+ cells with perfusion versus stop-flow method in patients with recent myocardial infarction: Early cardiac retention of 99mTc-labeled cells activity. Journal of Nuclear Cardiology, 2011, 18, 104-116.	1.4	51
53	Differential expression of Snail1 transcription factor and Snail1-related genes in alveolar and embryonal rhabdomyosarcoma subtypes Folia Histochemica Et Cytobiologica, 2011, 48, 671-7.	0.6	10
54	Inhibition of rhabdomyosarcoma's metastatic behavior through downregulation of MET receptor signaling Folia Histochemica Et Cytobiologica, 2010, 47, 485-9.	0.6	17

#	ARTICLE	IF	CITATIONS
55	Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. European Heart Journal, 2009,	1.0	427
56	Population of Rh123dim human keratinocytes form holoclones. Open Life Sciences, 2009, 4, 154-162.	0.6	1
57	Role of the Wnt/β-catenin network in regulating hematopoiesis. Archivum Immunologiae Et Therapiae Experimentalis, 2008, 56, 257-266.	1.0	31
58	Early myocardial engraftment of autologous CD34+ cells administered transcoronary via a physiological cell-delivery system. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35, 1929-1930.	3.3	3
59	Adventage of mesenchymal stem cells (MSC) expansion directly from purified bone marrow CD105+ and CD271+ cells Folia Histochemica Et Cytobiologica, 2008, 46, 307-14.	0.6	74
60	Inhibition of Rhabdomyosarcoma's Bone Marrow Metastasis through Blocking of MET Receptor Signaling Blood, 2007, 110, 1926-1926.	0.6	0
61	Evidence that platelet-derived microvesicles may transfer platelet-specific immunoreactive antigens to the surface of endothelial cells and CD34+ hematopoietic stem/ progenitor cellsimplication for the pathogenesis of immune thrombocytopenias. Folia Histochemica Et Cytobiologica, 2007, 45, 27-32.	0.6	24
62	New GvHD Mouse Model for Assessing Both Acute and Chronic Phase of the Disease Blood, 2006, 108, 5166-5166.	0.6	0
63	Hematopoietic Allotransplant Studies in Complement Deficient Mice Reveal Beneficial Role of Innate Immunity in Ameliorating Consequences of GVHD Blood, 2006, 108, 5165-5165.	0.6	0
64	Different Sensitivity of Normal and Malignant Cells to HSP90 Inhibitors Blood, 2006, 108, 4377-4377.	0.6	0
65	SDF-1 alone and in co-operation with HGF regulates biology of human cervical carcinoma cells. Folia Histochemica Et Cytobiologica, 2006, 44, 155-64.	0.6	18
66	Mesenchymal stem cells: characteristics and clinical applications. Folia Histochemica Et Cytobiologica, 2006, 44, 215-30.	0.6	223
67	Unexpected Evidence That Dimethylsulphoxide (DMSO) Upregulates Expression of CXCR4 on Hematopoietic Stem/Progenitor Cells (HSPC), Increases Their Responsiveness to an SDF-1 Gradient and Enhances Homing to Bone Marrow Blood, 2005, 106, 1973-1973.	0.6	0
68	C-met Receptor as a Potential Target for the Treatment of Patients with Multiple Myeloma Blood, 2005, 106, 3395-3395.	0.6	0
69	Stem cell biology: a never ending quest for understanding. Acta Biochimica Polonica, 2005, 52, 353-8.	0.3	5
70	CXCR4–SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood, 2002, 100, 2597-2606.	0.6	289
71	Numerous growth factors, cytokines, and chemokines are secreted by human CD34+ cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood, 2001, 97, 3075-3085.	0.6	457

72 Metformin in Cervical Cancer: Metabolic Reprogramming. , 0, , .