
Hiroyuki Mori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2599962/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PiXie Analysis for Monitoring Dynamic Protein Interaction and Folding in a Living Cell. Seibutsu Butsuri, 2021, 61, 036-039.	0.0	0
2	A photo-cross-linking approach to monitor protein dynamics in living cells. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129317.	1.1	20
3	Reversible autoinhibitory regulation ofEscherichia colimetallopeptidase BepA for selective Î ² -barrel protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27989-27996.	3.3	4
4	Tree of motility – A proposed history of motility systems in the tree of life. Genes To Cells, 2020, 25, 6-21.	0.5	108
5	Fine interaction profiling of VemP and mechanisms responsible for its translocation-coupled arrest-cancelation. ELife, 2020, 9, .	2.8	9
6	Monitoring substrate enables real-time regulation of a protein localization pathway. FEMS Microbiology Letters, 2018, 365, .	0.7	16
7	Identification and characterization of a translation arrest motif in VemP by systematic mutational analysis. Journal of Biological Chemistry, 2018, 293, 2915-2926.	1.6	18
8	A photo-cross-linking approach to monitor folding and assembly of newly synthesized proteins in a living cell. Journal of Biological Chemistry, 2018, 293, 677-686.	1.6	19
9	Heat shock transcription factor Ïf ³² defective in membrane transport can be suppressed by transposon insertion into genes encoding a restriction enzyme subunit or a putative autotransporter in <i>Escherichia coli</i> . Genes and Genetic Systems, 2018, 93, 229-235.	0.2	2
10	Tunnel Formation Inferred from the I-Form Structures of the Proton-Driven Protein Secretion Motor SecDF. Cell Reports, 2017, 19, 895-901.	2.9	38
11	The TPR domain of BepA is required for productive interaction with substrate proteins and the βâ€barrel assembly machinery complex. Molecular Microbiology, 2017, 106, 760-776.	1.2	26
12	A Novel SRP Recognition Sequence in the Homeostatic Control Region of Heat Shock Transcription Factor σ32. Scientific Reports, 2016, 6, 24147.	1.6	30
13	Nascent chain-monitored remodeling of the Sec machinery for salinity adaptation of marine bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5513-22.	3.3	57
14	Roles of the membrane-reentrant β-hairpin-like loop of RseP protease in selective substrate cleavage. ELife, 2015, 4, .	2.8	41
15	Structural basis of Sec-independent membrane protein insertion by YidC. Nature, 2014, 509, 516-520.	13.7	203
16	Conformational variation of the translocon enhancing chaperone SecDF. Journal of Structural and Functional Genomics, 2014, 15, 107-115.	1.2	10
17	Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase. Scientific Reports, 2014, 4, 7299.	1.6	109
18	Structure and function of a membrane component SecDF that enhances protein export. Nature, 2011, 474, 235-238.	13.7	202

Hiroyuki Mori

#	Article	IF	CITATIONS
19	Post-liberation cleavage of signal peptides is catalyzed by the site-2 protease (S2P) in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13740-13745.	3.3	67
20	Conformational Transition of Sec Machinery Inferred from Bacterial SecYE Structures. Seibutsu Butsuri, 2009, 49, 288-289.	0.0	0
21	Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature, 2008, 455, 988-991.	13.7	206
22	Crystal Structure of the Translocation ATPase SecA from Thermus thermophilus Reveals a Parallel, Head-to-Head Dimer. Journal of Molecular Biology, 2006, 364, 248-258.	2.0	84
23	Purification, crystallization and preliminary X-ray diffraction of SecDF, a translocon-associated membrane protein, fromThermus thermophilus. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 376-380.	0.7	22
24	Cloning, expression, purification, crystallization and initial crystallographic analysis of the preprotein translocation ATPase SecA fromThermus thermophilus. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 909-912.	0.7	2
25	The Long α-Helix of SecA Is Important for the ATPase Coupling of Translocation. Journal of Biological Chemistry, 2006, 281, 36249-36256.	1.6	36
26	Different modes of SecY-SecA interactions revealed by site-directed in vivo photo-cross-linking. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16159-16164.	3.3	106
27	SecM facilitates translocase function of SecA by localizing its biosynthesis. Genes and Development, 2005, 19, 436-444.	2.7	32
28	Mutational Analysis of Transmembrane Regions 3 and 4 of SecY, a Central Component of Protein Translocase. Journal of Bacteriology, 2004, 186, 3960-3969.	1.0	10
29	Interfering mutations provide in vivo evidence that Escherichia coli SecE functions in multimeric states. Molecular Genetics and Genomics, 2003, 268, 808-815.	1.0	7
30	Importance of transmembrane segments in Escherichia coli SecY. Molecular Genetics and Genomics, 2003, 269, 180-187.	1.0	5
31	Nearest Neighbor Analysis of the SecYEG Complex. 2. Identification of a SecYâ^'SecE Cytosolic Interface. Biochemistry, 2003, 42, 7442-7447.	1.2	10
32	Nearest Neighbor Analysis of the SecYEG Complex. 1. Identification of a SecYâ^'SecG Interface. Biochemistry, 2003, 42, 7434-7441.	1.2	16
33	A SecE Mutation That Modulates SecY-SecE Translocase Assembly, Identified as a Specific Suppressor of SecY Defects. Journal of Bacteriology, 2003, 185, 948-956.	1.0	13
34	Biochemical Characterization of a Mutationally Altered Protein Translocase: Proton Motive Force Stimulation of the Initiation Phase of Translocation. Journal of Bacteriology, 2003, 185, 405-412.	1.0	25
35	Fluorescence Resonance Energy Transfer Analysis of Protein Translocase. Journal of Biological Chemistry, 2003, 278, 14257-14264.	1.6	50
36	Superactive SecY Variants That Fulfill the Essential Translocation Function with a Reduced Cellular Quantity. Journal of Biological Chemistry, 2002, 277, 48550-48557.	1.6	10

HIROYUKI MORI

#	Article	IF	CITATIONS
37	Isolation of a diterpenoid substance with potent neuroprotective activity from fetal calf serum. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3288-3293.	3.3	53
38	Roles of the C-Terminal End of SecY in Protein Translocation and Viability of Escherichia coli. Journal of Bacteriology, 2002, 184, 2243-2250.	1.0	19
39	The Sec protein-translocation pathway. Trends in Microbiology, 2001, 9, 494-500.	3.5	259
40	An essential amino acid residue in the protein translocation channel revealed by targeted random mutagenesis of SecY. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5128-5133.	3.3	65
41	Genetic dissection of SecA: suppressor mutations against thesecY205translocase defect. Genes To Cells, 2000, 5, 991-999.	0.5	26
42	Length recognition at the Nâ€ŧerminal tail for the initiation of FtsHâ€mediated proteolysis. EMBO Reports, 2000, 1, 47-52.	2.0	49
43	Characterization of a Mutant Form of SecA That Alleviates a SecY Defect at Low Temperature and Shows a Synthetic Defect with SecY Alteration at High Temperature. Journal of Biochemistry, 2000, 127, 1071-1079.	0.9	11
44	A Mutation in secY That Causes Enhanced SecA Insertion and Impaired Late Functions in Protein Translocation. Journal of Bacteriology, 2000, 182, 3377-3382.	1.0	9
45	Two Independent Mechanisms Down-regulate the Intrinsic SecA ATPase Activity. Journal of Biological Chemistry, 2000, 275, 33209-33212.	1.6	23
46	Second transmembrane segment of FtsH plays a role in its proteolytic activity and homo-oligomerization. FEBS Letters, 1999, 460, 554-558.	1.3	16
47	Roles of SecC in ATP- and SecA-dependent protein translocation. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13567-13572.	3.3	39
48	Roles of the Periplasmic Domain of Escherichia coliFtsH (HflB) in Protein Interactions and Activity Modulation. Journal of Biological Chemistry, 1998, 273, 22326-22333.	1.6	44
49	Syd, a SecY-interacting Protein, Excludes SecA from the SecYE Complex with an Altered SecY24 Subunit. Journal of Biological Chemistry, 1998, 273, 18835-18840.	1.6	26
50	Amino-Terminal Region of SecA Is Involved in the Function of SecG for Protein Translocation into Escherichia coli Membrane Vesicles. Journal of Biochemistry, 1998, 124, 122-129.	0.9	32
51	Short Hydrophobic Segments in the Mature Domain of ProOmpA Determine Its Stepwise Movement during Translocation across the Cytoplasmic Membrane of Escherichia coli. Journal of Biological Chemistry, 1997, 272, 5880-5886.	1.6	34
52	In Vitro Analysis of the Stop-transfer Process during Translocation across the Cytoplasmic Membrane of Escherichia coli. Journal of Biological Chemistry, 1997, 272, 20082-20087.	1.6	21
53	The hydrophobic region of signal peptides is involved in the interaction with membrane-bound SecA. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1326, 23-36.	1.4	29
54	Characterization of a Potential Catalytic Residue, Asp-133, in the High Affinity ATP-binding Site of SecA, Translocation ATPase. Journal of Biological Chemistry, 1996, 271, 17439-17444.	1.6	22

Hiroyuki Mori

#	Article	IF	CITATIONS
55	Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32 EMBO Journal, 1995, 14, 2551-2560.	3.5	399
56	Stepwise Movement of Preproteins in the Process of Translocation across the Cytoplasmic Membrane of Escherichia coli. Journal of Biological Chemistry, 1995, 270, 30862-30868.	1.6	111
57	Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32. EMBO Journal, 1995, 14, 2551-60.	3.5	171
58	Induction of heat shock proteins by abnormal proteins results from stabilization and not increased synthesis of sigma 32 in Escherichia coli. Journal of Bacteriology, 1994, 176, 5648-5653.	1.0	85
59	Association ofN-ethylmaleimide-sensitive factor with synaptic vesicles. FEBS Letters, 1994, 350, 253-257.	1.3	61
60	Binding mode of glucans to \hat{l} ±-glucan phosphorylase isozymes and their chimeric enzymes. , 1994, , 167-171.		0
61	Engineered plant phosphorylase showing extraordinarily high affinity for various αâ€glucan molecules. Protein Science, 1993, 2, 1621-1629.	3.1	13
62	Heat induction of Î,32synthesis mediated by mRNA secondary structure: a primary step of the heat shock response inEscherichia coli. Nucleic Acids Research, 1993, 21, 5449-5455.	6.5	68
63	The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression. Journal of Bacteriology, 1993, 175, 1344-1351.	1.0	241
64	A chimeric alpha-glucan phosphorylase of plant type L and H isozymes. Functional role of 78-residue insertion in type L isozyme Journal of Biological Chemistry, 1993, 268, 5574-5581.	1.6	31
65	A chimeric alpha-glucan phosphorylase of plant type L and H isozymes. Functional role of 78-residue insertion in type L isozyme. Journal of Biological Chemistry, 1993, 268, 5574-81.	1.6	31
66	Structure and function of the ftsH gene in Escherichia coli. Research in Microbiology, 1991, 142, 279-282.	1.0	100
67	Potato tuber type H phosphorylase isozyme. Molecular cloning, nucleotide sequence, and expression of a full-length cDNA in Escherichia coli Journal of Biological Chemistry, 1991, 266, 18446-18453.	1.6	38
68	Structural Relationships in Higher Plant α-Glucan Phosphorylase Isozymes Differently Localized within Cells. , 1991, , 401-403.		0
69	Potato tuber type H phosphorylase isozyme. Molecular cloning, nucleotide sequence, and expression of a full-length cDNA in Escherichia coli. Journal of Biological Chemistry, 1991, 266, 18446-53.	1.6	32
70	Increased expression of genes for basic fibroblast growth factor and transforming growth factor type β2 in human benign prostatic hyperplasia. Prostate, 1990, 16, 71-80.	1.2	193
71	UDP-Glucose Pyrophosphorylase from Potato Tuber: cDNA Cloning and Sequencing1. Journal of Biochemistry, 1990, 108, 321-326.	0.9	62
72	Interrelationship between Ca2+-dependent phospholipid base-exchange reaction and phospholipase D-like activity in bovine retina. Lipids and Lipid Metabolism, 1989, 1003, 98-107.	2.6	10

#	Article	IF	CITATIONS
73	Molecular Cloning of cDNA Encoding Potato Amyloplast a-Glucan Phosphorylase and the Structure of Its Transit Peptide1. Journal of Biochemistry, 1989, 106, 691-695.	0.9	41