Philippe M Soriano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2599417/publications.pdf

Version: 2024-02-01

151 32,701 84 141 papers citations h-index g-index

163 163 163 31710 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Differential regulation of cranial and cardiac neural crest by serum response factor and its cofactors. ELife, 2022, 11 , .	2.8	3
2	Pulling back the curtain: The hidden functions of receptor tyrosine kinases in development. Current Topics in Developmental Biology, 2022, , 123-152.	1.0	7
3	The <scp>Wnt1â€Cre2</scp> transgene is active in the male germline. Genesis, 2022, 60, e23468.	0.8	3
4	FGF signaling regulates development by processes beyond canonical pathways. Genes and Development, 2020, 34, 1735-1752.	2.7	22
5	A Fateful Decision: Tgif1 and Cardiac Neural Crest Identity. Developmental Cell, 2020, 53, 255-256.	3.1	O
6	A most formidable arsenal: genetic technologies for building a better mouse. Genes and Development, 2020, 34, 1256-1286.	2.7	24
7	Commentary on Tam and Zhou, 1996. Developmental Biology, 2019, 447, 127-136.	0.9	O
8	FGFR1 regulates trophectoderm development and facilitates blastocyst implantation. Developmental Biology, 2019, 446, 94-101.	0.9	25
9	MAPK and PI3K signaling: At the crossroads of neural crest development. Developmental Biology, 2018, 444, S79-S97.	0.9	47
10	Intersectional gene inactivation: there is more to conditional mutagenesis than Cre. Science China Life Sciences, 2018, 61, 1115-1117.	2.3	2
11	Distinct mechanisms for PDGF and FGF signaling in primitive endoderm development. Developmental Biology, 2018, 442, 155-161.	0.9	19
12	Distinct Requirements for FGFR1 and FGFR2 in Primitive Endoderm Development and Exit from Pluripotency. Developmental Cell, 2017, 41, 511-526.e4.	3.1	150
13	Deregulated PDGFRα signaling alters coronal suture morphogenesis and leads to craniosynostosis through endochondral ossification. Development (Cambridge), 2017, 144, 4026-4036.	1.2	18
14	Generation of an immortalized mouse embryonic palatal mesenchyme cell line. PLoS ONE, 2017, 12, e0179078.	1.1	16
15	Genetic insights into the mechanisms of Fgf signaling. Genes and Development, 2016, 30, 751-771.	2.7	178
16	PDGFRÎ ² regulates craniofacial development through homodimers and functional heterodimers with PDGFRα. Genes and Development, 2016, 30, 2443-2458.	2.7	33
17	A Thousand and One Receptor Tyrosine Kinases. Current Topics in Developmental Biology, 2016, 117, 393-404.	1.0	13
18	<i>Sox10ER</i> ^{<i>T2</i>} <i>CreER</i> ^{<i>T2</i>} mice enable tracing of distinct neural crest cell populations. Developmental Dynamics, 2015, 244, 1394-1403.	0.8	14

#	Article	IF	CITATIONS
19	Neural crest defects in ephrin-B2 mutant mice are non-autonomous and originate from defects in the vasculature. Developmental Biology, 2015, 406, 186-195.	0.9	14
20	Receptor Tyrosine Kinase Signaling. Current Topics in Developmental Biology, 2015, 111, 135-182.	1.0	24
21	î ² -PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. Journal of Hepatology, 2015, 63, 141-147.	1.8	142
22	Double minute amplification of mutant PDGF receptor \hat{l}_{\pm} in a mouse glioma model. Scientific Reports, 2015, 5, 8468.	1.6	14
23	Fgfr1 regulates development through the combinatorial use of signaling proteins. Genes and Development, 2015, 29, 1863-1874.	2.7	48
24	Generating Diversity and Specificity through Developmental Cell Signaling. , 2015, , 3-36.		1
25	Receptor tyrosine kinases modulate distinct transcriptional programs by differential usage of intracellular pathways. ELife, 2015, 4, .	2.8	46
26	SRF Regulates Craniofacial Development through Selective Recruitment of MRTF Cofactors by PDGF Signaling. Developmental Cell, 2014, 31, 332-344.	3.1	46
27	PI3K-mediated PDGFRα signaling regulates survival and proliferation in skeletal development through p53-dependent intracellular pathways. Genes and Development, 2014, 28, 1005-1017.	2.7	55
28	The widely used Wnt1-Cre transgene causes developmental phenotypes by ectopic activation of Wnt signaling. Developmental Biology, 2013, 379, 229-234.	0.9	220
29	A Critical Role for PDGFRα Signaling in Medial Nasal Process Development. PLoS Genetics, 2013, 9, e1003851.	1.5	60
30	Clonal Expansion Analysis of Transposon Insertions by High-Throughput Sequencing Identifies Candidate Cancer Genes in a PiggyBac Mutagenesis Screen. PLoS ONE, 2013, 8, e72338.	1.1	12
31	Eph/ephrin signaling: Genetic, phosphoproteomic, and transcriptomic approaches. Seminars in Cell and Developmental Biology, 2012, 23, 26-34.	2.3	31
32	PDGFR \hat{l}^2 Signaling Regulates Mural Cell Plasticity and Inhibits Fat Development. Developmental Cell, 2011, 20, 815-826.	3.1	178
33	ROSA26Flpo deleter mice promote efficient inversion of conditional gene traps in vivo. Genesis, 2010, 48, 603-606.	0.8	26
34	Ephrin-B1 forward signaling regulates craniofacial morphogenesis by controlling cell proliferation across Eph–ephrin boundaries. Genes and Development, 2010, 24, 2068-2080.	2.7	89
35	Gene Trap Mutagenesis in the Mouse. Methods in Enzymology, 2010, 477, 243-269.	0.4	39
36	Preface. Methods in Enzymology, 2010, 477, xix.	0.4	0

#	Article	IF	CITATIONS
37	Preface. Methods in Enzymology, 2010, 476, xix.	0.4	1
38	Ephrin-B1 regulates axon guidance by reverse signaling through a PDZ-dependent mechanism. Genes and Development, 2009, 23, 1586-1599.	2.7	72
39	Increased PDGFRα Activation Disrupts Connective Tissue Development and Drives Systemic Fibrosis. Developmental Cell, 2009, 16, 303-313.	3.1	237
40	Regulation of neural progenitor cell state by ephrin-B. Journal of Cell Biology, 2008, 181, 973-983.	2.3	71
41	The PDGF signaling pathway controls multiple steroid-producing lineages. Genes and Development, 2008, 22, 3255-3267.	2.7	112
42	Ephrin-B2 forward signaling regulates somite patterning and neural crest cell development. Developmental Biology, 2007, 304, 182-193.	0.9	82
43	PDGF signaling specificity is mediated through multiple immediate early genes. Nature Genetics, 2007, 39, 52-60.	9.4	175
44	High-Efficiency FLP and \hat{l}_{l}^{\dagger} C31 Site-Specific Recombination in Mammalian Cells. PLoS ONE, 2007, 2, e162.	1.1	343
45	Inhibition of Gap Junction Communication at Ectopic Eph/ephrin Boundaries Underlies Craniofrontonasal Syndrome. PLoS Biology, 2006, 4, e315.	2.6	137
46	Engineering mutations: Deconstructing the mouse gene by gene. Developmental Dynamics, 2006, 235, 2424-2436.	0.8	14
47	Mouse development: From black eyes to knockouts. Developmental Dynamics, 2006, 235, 2291-2291.	0.8	0
48	The International Gene Trap Consortium Website: a portal to all publicly available gene trap cell lines in mouse. Nucleic Acids Research, 2006, 34, D642-D648.	6.5	131
49	Context-specific requirements for Fgfr1 signaling through Frs2 and Frs3 during mouse development. Development (Cambridge), 2006, 133, 663-673.	1.2	108
50	Genotyping Embryonic Stem (ES) Cell Colonies Prior to Picking. Cold Spring Harbor Protocols, 2006, 2006, pdb.prot4415-pdb.prot4415.	0.2	0
51	PDGFR-? signaling is critical for tooth cusp and palate morphogenesis. Developmental Dynamics, 2005, 232, 75-84.	0.8	73
52	Ephrin signaling in vivo: Look both ways. Developmental Dynamics, 2005, 232, 1-10.	0.8	186
53	In vivo convergence of BMP and MAPK signaling pathways: impact of differential Smad1 phosphorylation on development and homeostasis. Genes and Development, 2004, 18, 1482-1494.	2.7	141
54	Ephrin-B1 forward and reverse signaling are required during mouse development. Genes and Development, 2004, 18, 572-583.	2.7	257

#	Article	IF	CITATIONS
55	A public gene trap resource for mouse functional genomics. Nature Genetics, 2004, 36, 543-544.	9.4	213
56	The Knockout Mouse Project. Nature Genetics, 2004, 36, 921-924.	9.4	556
57	Identification and validation of PDGF transcriptional targets by microarray-coupled gene-trap mutagenesis. Nature Genetics, 2004, 36, 304-312.	9.4	102
58	A specific requirement for PDGF-C in palate formation and PDGFR- $\hat{l}\pm$ signaling. Nature Genetics, 2004, 36, 1111-1116.	9.4	199
59	Cryptic boundaries in roof plate and choroid plexus identified by intersectional gene activation. Nature Genetics, 2003, 35, 70-75.	9.4	203
60	Roles of PDGF in animal development. Development (Cambridge), 2003, 130, 4769-4784.	1.2	480
61	Evolutionary Divergence of Platelet-Derived Growth Factor Alpha Receptor Signaling Mechanisms. Molecular and Cellular Biology, 2003, 23, 4013-4025.	1.1	388
62	Cell autonomous requirement for PDGFRÎ \pm in populations of cranial and cardiac neural crest cells. Development (Cambridge), 2003, 130, 507-518.	1.2	234
63	Additive Effects of PDGF Receptor \hat{l}^2 Signaling Pathways in Vascular Smooth Muscle Cell Development. PLoS Biology, 2003, 1, e52.	2.6	162
64	Gene Trap Mutagenesis in Embryonic Stem Cells. Methods in Enzymology, 2003, 365, 365-386.	0.4	9
65	Gene trap mutagenesis in embryonic stem cells. Methods in Enzymology, 2003, 365, 367-86.	0.4	20
66	Overlapping and Unique Roles for C-Terminal Binding Protein 1 (CtBP1) and CtBP2 during Mouse Development. Molecular and Cellular Biology, 2002, 22, 5296-5307.	1.1	269
67	\hat{I}^2 IV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier. Journal of Cell Biology, 2002, 156, 337-348.	2.3	267
68	An Allelic Series at the PDGFαR Locus Indicates Unequal Contributions of Distinct Signaling Pathways During Development. Developmental Cell, 2002, 2, 103-113.	3.1	165
69	Remembering Rosa Beddington?A tribute from her friends and colleagues. Developmental Dynamics, 2002, 223, 3-11.	0.8	0
70	The Two PDGF Receptors Maintain Conserved Signaling In Vivo despite Divergent Embryological Functions. Molecular Cell, 2001, 7, 343-354.	4.5	129
71	A gene trap vector system for identifying transcriptionally responsive genes. Nature Biotechnology, 2001, 19, 579-582.	9.4	69
72	An Flp indicator mouse expressing alkaline phosphatase from the ROSA26 locus. Nature Genetics, 2001, 29, 257-259.	9.4	54

#	Article	IF	CITATIONS
73	Functional Annotation of Mouse Genome Sequences. Science, 2001, 291, 1251-1255.	6.0	125
74	Epiblast-restricted Cre expression in MORE mice: A tool to distinguish embryonic vs. extra-embryonic gene function. Genesis, 2000, 26, 113-115.	0.8	327
75	Widespread recombinase expression using FLPeR (Flipper) mice. Genesis, 2000, 28, 106-110.	0.8	564
76	Mice deficient in Six5 develop cataracts: implications for myotonic dystrophy. Nature Genetics, 2000, 25, 105-109.	9.4	228
77	PDGF-C is a new protease-activated ligand for the PDGF α-receptor. Nature Cell Biology, 2000, 2, 302-309.	4.6	548
78	Retention of PDGFR-beta function in mice in the absence of phosphatidylinositol 3'-kinase and phospholipase Cgamma signaling pathways. Genes and Development, 2000, 14, 3179-3190.	2.7	69
79	Widespread recombinase expression using FLPeR (Flipper) mice. Genesis, 2000, 28, 106-110.	0.8	10
80	<i>E-MAP-115</i> , encoding a microtubule-associated protein, is a retinoic acid-inducible gene required for spermatogenesis. Genes and Development, 2000, 14, 1332-1342.	2.7	58
81	Platelet-derived growth factor beta receptor regulates interstitial fluid homeostasis through phosphatidylinositol-3' kinase signaling. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11410-11415.	3.3	169
82	Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genetics, 1999, 21, 70-71.	9.4	4,530
83	Growth factor signaling pathways in vascular development. Oncogene, 1999, 18, 7917-7932.	2.6	95
84	Mena Is Required for Neurulation and Commissure Formation. Neuron, 1999, 22, 313-325.	3.8	377
85	EGF Receptor Signaling Stimulates SRC Kinase Phosphorylation of Clathrin, Influencing Clathrin Redistribution and EGF Uptake. Cell, 1999, 96, 677-687.	13.5	317
86	Shroom, a PDZ Domain–Containing Actin-Binding Protein, Is Required for Neural Tube Morphogenesis in Mice. Cell, 1999, 99, 485-497.	13.5	342
87	Src family kinases are required for integrin but not PDGFR signal transduction. EMBO Journal, 1999, 18, 2459-2471.	3.5	685
88	PDGFB Regulates the Development of the Labyrinthine Layer of the Mouse Fetal Placenta. Developmental Biology, 1999, 212, 124-136.	0.9	108
89	Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes and Development, 1999, 13, 3125-3135.	2.7	267
90	Hrs, a FYVE finger protein localized to early endosomes, is implicated in vesicular traffic and required for ventral folding morphogenesis. Genes and Development, 1999, 13, 1475-1485.	2.7	207

#	Article	IF	Citations
91	Targeted disruption of the MYC antagonist MAD1 inhibits cell cycle exit during granulocyte differentiation. EMBO Journal, 1998, 17, 774-785.	3.5	123
92	Chimaeric analysis reveals role of Pdgf receptors in all muscle lineages. Nature Genetics, 1998, 18, 385-388.	9.4	105
93	Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Current Biology, 1998, 8, 26-33.	1.8	368
94	Cerebellar abnormalities in the disabled (mdab1-1) mouse. Journal of Comparative Neurology, 1998, 402, 238-251.	0.9	91
95	L1 knockout mice show dilated ventricles, vermis hypoplasia and impaired exploration patterns. Human Molecular Genetics, 1998, 7, 999-1009.	1.4	228
96	Disruption of overlapping transcripts in the ROSA Âgeo 26 gene trap strain leads to widespread expression of Â-galactosidase in mouse embryos and hematopoietic cells. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3789-3794.	3.3	799
97	The Secretory Protein Sec8 Is Required for Paraxial Mesoderm Formation in the Mouse. Developmental Biology, 1997, 192, 364-374.	0.9	65
98	Characterization of the B Lymphocyte Populations in Lyn-Deficient Mice and the Role of Lyn in Signal Initiation and Down-Regulation. Immunity, 1997, 7, 69-81.	6.6	409
99	Neuronal position in the developing brain is regulated by mouse disabled-1. Nature, 1997, 389, 733-737.	13.7	672
100	Mena, a Relative of VASP and Drosophila Enabled, Is Implicated in the Control of Microfilament Dynamics. Cell, 1996, 87, 227-239.	13.5	631
101	Knockouts of Src-family kinases: stiff bones, wimpy T cells, and bad memories Genes and Development, 1996, 10, 1845-1857.	2.7	263
102	Deficiency of the Hck and Src tyrosine kinases results in extreme levels of extramedullary hematopoiesis. Blood, 1996, 87, 1780-1792.	0.6	2
103	Specific and redundant roles of Src and Fyn in organizing the cytoskeleton. Nature, 1995, 376, 267-271.	13.7	328
104	Gene Targeting in ES Cells. Annual Review of Neuroscience, 1995, 18, 1-18.	5.0	53
105	Combined deficiencies of Src, Fyn, and Yes tyrosine kinases in mutant mice Genes and Development, 1994, 8, 1999-2007.	2.7	289
106	Functional overlap in the src gene family: inactivation of hck and fgr impairs natural immunity Genes and Development, 1994, 8, 387-398.	2.7	211
107	Activation of the c-Src tyrosine kinase is required for the induction of mammary tumors in transgenic mice Genes and Development, 1994, 8, 23-32.	2.7	174
108	Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice Genes and Development, 1994, 8, 1888-1896.	2.7	864

#	Article	IF	Citations
109	Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice Genes and Development, 1994, 8, 2293-2301.	2.7	300
110	NCAM-dependent neurite outgrowth is inhibited in neurons from Fyn-minus mice Journal of Cell Biology, 1994, 127, 825-833.	2.3	250
111	Endothelial cell transformation by polyomavirus middle T antigen in mice lacking Src-related kinases. Current Biology, 1994, 4, 100-109.	1.8	46
112	The helix-loop-helix gene E2A is required for B cell formation. Cell, 1994, 79, 875-884.	13.5	638
113	Genetics of signal transduction: tales from the mouse. Current Opinion in Genetics and Development, 1994, 4, 40-46.	1.5	15
114	Impaired neurite outgrowth of src-minus cerebellar neurons on the cell adhesion molecule L1. Neuron, 1994, 12, 873-884.	3.8	277
115	Histomorphometric and immunocytochemical studies of src-related osteopetrosis. Bone, 1993, 14, 335-340.	1.4	30
116	Disruption of the csk gene, encoding a negative regulator of Src family tyrosine kinases, leads to neural tube defects and embryonic lethality in mice. Cell, 1993, 73, 1117-1124.	13.5	390
117	Spatial learning in mutant mice. Science, 1993, 262, 760-763.	6.0	49
118	Response. Science, 1993, 262, 762-763.	6.0	2
119	Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice Genes and Development, 1993, 7, 2298-2307.	2.7	331
120	Osteopetrosis in Src-deficient mice is due to an autonomous defect of osteoclasts Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 4485-4489.	3.3	310
121	[41] Insertional mutagenesis by retroviruses and promoter traps in embryonic stem cells. Methods in Enzymology, 1993, 225, 681-701.	0.4	59
122	pp59fyn mutant mice display differential signaling in thymocytes and peripheral T cells. Cell, 1992, 70, 741-750.	13.5	578
123	Mouse PO gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell, 1992, 71, 565-576.	13.5	501
124	Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science, 1992, 258, 1903-1910.	6.0	1,264
125	Pharmacological and Genetic Approaches to the Analysis of Tyrosine Kinase Function in Long-term Potentiation. Cold Spring Harbor Symposia on Quantitative Biology, 1992, 57, 517-526.	2.0	11
126	Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice Journal of Clinical Investigation, 1992, 90, 1622-1627.	3.9	519

#	Article	lF	Citations
127	Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell, 1991, 64, 693-702.	13.5	2,054
128	Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice Genes and Development, 1991, 5, 1513-1523.	2.7	1,269
129	Phosphorylation of c-Src on tyrosine 527 by another protein tyrosine kinase. Science, 1991, 254, 568-571.	6.0	92
130	Promoter interactions in retrovirus vectors introduced into fibroblasts and embryonic stem cells. Journal of Virology, 1991, 65, 2314-2319.	1.5	94
131	Structure and chromosomal mapping of a highly polymorphic repetitive DNA sequence from the pseudoautosomal region of the mouse sex chromosomes. Cytogenetic and Genome Research, 1990, 53, 129-133.	0.6	26
132	Retroviruses and insertional mutagenesis in mice: proviral integration at the Mov 34 locus leads to early embryonic death Genes and Development, 1987, 1, 366-375.	2.7	121
133	High rate of recombination and double crossovers in the mouse pseudoautosomal region during male meiosis Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 7218-7220.	3.3	98
134	Insertional mutagenesis in mice. Trends in Genetics, 1987, 3, 162-166.	2.9	102
135	Retroviruses as Insertional Mutagens. , 1987, , 121-129.		0
136	Retroviruses as probes for mammalian development: Allocation of cells to the somatic and germ cell lineages. Cell, 1986, 46, 19-29.	13.5	220
137	High frequency of unequal recombination in pseudoautosomal region shown by proviral insertion in transgenic mouse. Nature, 1986, 324, 682-685.	13.7	74
138	Tissue-specific and ectopic expression of genes introduced into transgenic mice by retroviruses. Science, 1986, 234, 1409-1413.	6.0	113
139	Liposomes for gene transfer and expression in vivo. Colloids and Surfaces, 1985, 14, 325-337.	0.9	0
140	Liposomes for Gene Transfer and Expression <i>in vivo</i> . Novartis Foundation Symposium, 1984, 103, 254-280.	1.2	1
141	In vivo expression of rat insulin after intravenous administration of the liposome-entrapped gene for rat insulin I Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 1068-1072.	3.3	159
142	The distribution of interspersed repeats is nonuniform and conserved in the mouse and human genomes Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 1816-1820.	3.3	142
143	Targeted and nontargeted liposomes for in vivo transfer to rat liver cells of a plasmid containing the preproinsulin I gene Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 7128-7131.	3.3	102
144	Liposome-Mediated Gene Transfer In Vivo. Uptake and Expression of the Preproinsulin I Gene by Rats and Mice., 1983,, 195-206.		2

#	Article	IF	CITATIONS
145	Sequence organization and genomic distribution of the major family of interspersed repeats of mouse DNA Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 355-359.	3.3	124
146	The genes coding for the cytoskeletal proteins actin and vimentin in warm-blooded vertebrates EMBO Journal, 1982, 1, 167-171.	3 . 5	122
147	The scattered distribution of actin genes in the mouse and human genomes EMBO Journal, 1982, 1, 579-583.	3.5	44
148	Genes Coding for Vimentin and Actin in Mammals and Birds. Advances in Experimental Medicine and Biology, 1982, 158, 349-357.	0.8	4
149	Nucleotide sequence analysis of a cloned duck β-globin cDNA. Gene, 1981, 14, 11-21.	1.0	21
150	The Major Components of the Mouse and Human Genomes. 1. Preparation, Basic Properties and Compositional Heterogeneity. FEBS Journal, 1981, 115, 227-233.	0.2	145
151	The Major Components of the Mouse and Human Genomes. 2. Reassociation Kinetics. FEBS Journal, 1981, 115, 235-239.	0.2	23