De-Fu Bu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2599220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HYDRODYNAMICAL NUMERICAL SIMULATION OF WIND PRODUCTION FROM BLACK HOLE HOT ACCRETION FLOWS AT VERY LARGE RADII. Astrophysical Journal, 2016, 818, 83.	4.5	55
2	Self-similar solution of hot accretion flows with ordered magnetic field and outflow. Monthly Notices of the Royal Astronomical Society, 2009, 392, 325-331.	4.4	49
3	On the convective instability of hot radiative accretion flows. Monthly Notices of the Royal Astronomical Society, 2010, 408, 1051-1060.	4.4	44
4	On the role of initial and boundary conditions in numerical simulations of accretion flows. Monthly Notices of the Royal Astronomical Society, 2013, 434, 1692-1701.	4.4	43
5	MAGNETOHYDRODYNAMIC NUMERICAL SIMULATION OF WIND PRODUCTION FROM HOT ACCRETION FLOWS AROUND BLACK HOLES AT VERY LARGE RADII. Astrophysical Journal, 2016, 823, 90.	4.5	41
6	TWO-DIMENSIONAL NUMERICAL SIMULATIONS OF SUPERCRITICAL ACCRETION FLOWS REVISITED. Astrophysical Journal, 2014, 780, 79.	4.5	35
7	On the wind production from hot accretion flows with different accretion rates. Monthly Notices of the Royal Astronomical Society, 2018, 474, 1206-1213.	4.4	16
8	The effects of magnetic field strength on the properties of wind generated from hot accretion flow. Astronomy and Astrophysics, 2018, 615, A35.	5.1	15
9	Numerical Simulations of Winds Driven by Radiation Force from the Corona above a Thin Disk. Astrophysical Journal, 2018, 867, 100.	4.5	14
10	Effects of anisotropic thermal conduction on wind properties in hot accretion flow. Monthly Notices of the Royal Astronomical Society, 2016, 459, 746-753.	4.4	13
11	Quenching Black Hole Accretion by Active Galactic Nuclei Feedback. Astrophysical Journal, 2019, 871, 138.	4.5	13
12	Anisotropic Multimessenger Signals from Black Hole Neutrino-dominated Accretion Flows with Outflows in Binary Compact Object Mergers. Astrophysical Journal, 2022, 925, 43.	4.5	11
13	Thermal wind from hot accretion flows at large radii. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4395-4402.	4.4	10
14	Radiation-driven outflows in AGNs: revisiting feedback effects of scattered and reprocessed photons. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2567-2578.	4.4	8
15	What is the real accretion rate on to a black hole for low-angular-momentum accretion?. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1724-1734.	4.4	7
16	Two-dimensional Inflow–Outflow Solution of Supercritical Accretion Flow. Astrophysical Journal, 2020, 888, 86.	4.5	7
17	The effect of accretion environment at large radius on hot accretion flows. Monthly Notices of the Royal Astronomical Society, 2018, 476, 954-960.	4.4	6
18	Magnetohydrodynamic Numerical Simulation of the Outflows Driven by Magnetic Field and Radiation Force from the Corona above a Thin Disk. Astrophysical Journal, 2019, 881, 34.	4.5	6

De-Fu Bu

#	Article	IF	CITATIONS
19	Self-Similar Solution of Hot Accretion Flow with Anisotropic Pressure. Universe, 2019, 5, 89.	2.5	5
20	Two-dimensional Inflow-wind Solution of Hot Accretion Flow. I. Hydrodynamics. Astrophysical Journal, 2021, 909, 140.	4.5	5
21	Large-scale dynamics of winds driven by line force from a thin accretion disc. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1141-1153.	4.4	5
22	Can Warm Absorbers Be Driven by Ultra-fast Outflows?. Astrophysical Journal, 2021, 921, 100.	4.5	4
23	Active Galactic Nuclei Feedback at the Parsec Scale. Astrophysical Journal, 2019, 882, 55.	4.5	2
24	Hot Accretion Flow in Two-Dimensional Spherical Coordinates: Considering Pressure Anisotropy and Magnetic Field. Universe, 2019, 5, 197.	2.5	2
25	Hot Accretion Flow around Neutron Stars. Astrophysical Journal, 2019, 875, 147.	4.5	2
26	Two-temperature Radiative Hot Accretion Flow around Neutron Stars. Astrophysical Journal, 2020, 890, 116.	4.5	2
27	Self-similar Solution of Hot Accretion Flow with Thermal Conduction and Anisotropic Pressure. Astrophysical Journal, 2022, 926, 182.	4.5	1