John C Chappell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2599218/publications.pdf

Version: 2024-02-01

		361045	476904	
34	1,459	20	29	
papers	citations	h-index	g-index	
35	35	35	1796	
33	33	33	1770	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Pericyte Progenitor Coupling to the Emerging Endothelium During Vasculogenesis via Connexin 43. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, ATVBAHA121317324.	1.1	16
2	The cerebral microvasculature: Basic and clinical perspectives on stroke and glioma. Microcirculation, 2021, 28, e12671.	1.0	5
3	Pericyte migration and proliferation are tightly synchronized to endothelial cell sprouting dynamics. Integrative Biology (United Kingdom), 2021, 13, 31-43.	0.6	19
4	Pericytes in Vascular Development. Current Tissue Microenvironment Reports, 2020, 1, 143-154.	1.3	15
5	Specific labeling of synaptic schwann cells reveals unique cellular and molecular features. ELife, 2020, 9, .	2.8	45
6	Applications of Ultrasound to Stimulate Therapeutic Revascularization. International Journal of Molecular Sciences, 2019, 20, 3081.	1.8	15
7	Blood Vessel Patterning on Retinal Astrocytes Requires Endothelial Flt-1 (VEGFR-1). Journal of Developmental Biology, 2019, 7, 18.	0.9	12
8	The pericyte microenvironment during vascular development. Microcirculation, 2019, 26, e12554.	1.0	42
9	Microvascular bioengineering: a focus on pericytes. Journal of Biological Engineering, 2019, 13, 26.	2.0	31
10	Excess vascular endothelial growth factor-A disrupts pericyte recruitment during blood vessel formation. Angiogenesis, 2019, 22, 167-183.	3.7	53
11	Hypoxia, angiogenesis, and metabolism in the hereditary kidney cancers. Journal of Clinical Investigation, 2019, 129, 442-451.	3.9	76
12	Establishment and characterization of an embryonic pericyte cell line. Microcirculation, 2018, 25, e12461.	1.0	14
13	Von Hippel-Lindau mutations disrupt vascular patterning and maturation via Notch. JCI Insight, 2018, 3,	2.3	19
14	Agentâ€Based Model of Pericyte Response to Plateletâ€Derived Growth Factorâ€BB from Sprouting Endothelial Cells in the Developing Mouse Retina. FASEB Journal, 2018, 32, 708.2.	0.2	0
15	Agent Based Model of Endothelial Cell and Pericyte Interactions During Angiogenesis in the Germinal Matrix. FASEB Journal, 2018, 32, 573.1.	0.2	O
16	Blood vessel anastomosis is spatially regulated by Flt1 during angiogenesis. Development (Cambridge), 2017, 144, 889-896.	1.2	46
17	Agentâ€based computational model of retinal angiogenesis simulates microvascular network morphology as a function of pericyte coverage. Microcirculation, 2017, 24, e12393.	1.0	34
18	Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation. Cardiovascular Research, 2016, 111, 84-93.	1.8	56

#	Article	IF	CITATIONS
19	Flt-1 (Vascular Endothelial Growth Factor Receptor-1) Is Essential for the Vascular Endothelial Growth Factor–Notch Feedback Loop During Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1952-1959.	1.1	42
20	How Blood Vessel Networks Are Made and Measured. Cells Tissues Organs, 2012, 195, 94-107.	1.3	47
21	Computational Modeling of Interacting VEGF and Soluble VEGF Receptor Concentration Gradients. Frontiers in Physiology, $2011, 2, 62$.	1.3	46
22	Regulation of blood vessel sprouting. Seminars in Cell and Developmental Biology, 2011, 22, 1005-1011.	2.3	82
23	The Ras Activator RasGRP3 Mediates Diabetes-Induced Embryonic Defects and Affects Endothelial Cell Migration. Circulation Research, 2011, 108, 1199-1208.	2.0	19
24	Variations in Tip Cell Proximity and sFlt1 Gradients Alter VEGF Receptor Activation in a Computational Model. FASEB Journal, 2011, 25, 1091.11.	0.2	0
25	Vascular Development. Current Topics in Developmental Biology, 2010, 90, 43-72.	1.0	55
26	Local Guidance of Emerging Vessel Sprouts Requires Soluble Flt-1. Developmental Cell, 2009, 17, 377-386.	3.1	213
27	Targeted Delivery of Nanoparticles Bearing Fibroblast Growth Factorâ€2 by Ultrasonic Microbubble Destruction for Therapeutic Arteriogenesis. Small, 2008, 4, 1769-1777.	5.2	83
28	The VEGF receptor Flt-1 spatially modulates Flk-1 signaling and blood vessel branching. Journal of Cell Biology, 2008, 181, 847-858.	2.3	161
29	Ultrasonic Microbubble Destruction Stimulates Therapeutic Arteriogenesis Via the CD18-Dependent Recruitment of Bone Marrow–Derived Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1117-1122.	1.1	29
30	The VEGF receptor Flt-1 spatially modulates Flk-1 signaling and blood vessel branching. Journal of Experimental Medicine, 2008, 205, i16-i16.	4.2	0
31	Bioengineering Angiogenesis: Novel Approaches to Stimulating Microvessel Growth and Remodeling. , 2006, , 125-157.		0
32	Targeted Therapeutic Applications of Acoustically Active Microspheres in the Microcirculation. Microcirculation, 2006, 13, 57-70.	1.0	30
33	Ultrasound-microbubble-induced neovascularization in mouse skeletal muscle. Ultrasound in Medicine and Biology, 2005, 31, 1411-1422.	0.7	36
34	Influence of injection site, microvascular pressureand ultrasound variables on microbubble-mediated delivery of microspheres to muscle. Journal of the American College of Cardiology, 2002, 39, 726-731.	1.2	118