Brian C Wilson

List of Publications by Citations

Source: https://exaly.com/author-pdf/259899/brian-c-wilson-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 138 22,519 413 h-index g-index citations papers 6.67 25,605 475 5.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
413	Photodynamic therapy of cancer: an update. <i>Ca-A Cancer Journal for Clinicians</i> , 2011 , 61, 250-81	220.7	3005
412	The physics, biophysics and technology of photodynamic therapy. <i>Physics in Medicine and Biology</i> , 2008 , 53, R61-109	3.8	703
411	In Vivo Fluorescence Spectroscopy and Imaging for Oncological Applications. <i>Photochemistry and Photobiology</i> , 1998 , 68, 603-632	3.6	591
410	Speckle variance detection of microvasculature using swept-source optical coherence tomography. <i>Optics Letters</i> , 2008 , 33, 1530-2	3	515
409	Optical properties of Intralipid: a phantom medium for light propagation studies. <i>Lasers in Surgery and Medicine</i> , 1992 , 12, 510-9	3.6	426
408	Direct Near-infrared Luminescence Detection of Singlet Oxygen Generated by Photodynamic Therapy in Cells In Vitro and Tissues In Vivo¶. <i>Photochemistry and Photobiology</i> , 2002 , 75, 382-391	3.6	345
407	Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue. <i>Applied Optics</i> , 1996 , 35, 2304-14	1.7	329
406	Blood-vessel closure using photosensitizers engineered for two-photon excitation. <i>Nature Photonics</i> , 2008 , 2, 420-424	33.9	318
405	Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. <i>Cell</i> , 2014 , 158, 288-299	56.2	283
404	Prostate cancer detection with multi-parametric MRI: logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. <i>Journal of Magnetic Resonance Imaging</i> , 2009 , 30, 327-34	5.6	278
403	In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. <i>Nature Nanotechnology</i> , 2015 , 10, 325-32	28.7	258
402	Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 8989-94	11.5	253
401	Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. <i>Journal of Neurosurgery</i> , 2011 , 115, 11-7	3.2	227
400	Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps. <i>Gastrointestinal Endoscopy</i> , 2003 , 57, 396-402	5.2	227
399	Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features. <i>Radiology</i> , 2010 , 255, 485-94	20.5	220
398	Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between Eminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article. <i>Journal of Neurosurgery</i> , 2011 ,	3.2	207
397	114, 595-603 In vivo and post mortem measurements of the attenuation spectra of light in mammalian tissues. Photochemistry and Photobiology, 1985 , 42, 153-62	3.6	201

396	Optimized speckle variance OCT imaging of microvasculature. <i>Optics Letters</i> , 2010 , 35, 1257-9	3	184
395	Autofluorescence endoscopy: feasibility of detection of GI neoplasms unapparent to white light endoscopy with an evolving technology. <i>Gastrointestinal Endoscopy</i> , 2001 , 53, 642-50	5.2	183
394	In vivo Near-infrared Raman Spectroscopy: Demonstration of Feasibility During Clinical Gastrointestinal Endoscopy ¶. <i>Photochemistry and Photobiology</i> , 2000 , 72, 146-150	3.6	178
393	Study of Fiber-Optic Probes for in vivo Medical Raman Spectroscopy. <i>Applied Spectroscopy</i> , 1999 , 53, 619-627	3.1	175
392	The microenvironment effect on the generation of reactive oxygen species by Pd-bacteriopheophorbide. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6487-97	16.4	166
391	Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects. <i>Photochemistry and Photobiology</i> , 2006 , 82, 1198-210	3.6	162
390	In vivo tests of the concept of photodynamic threshold dose in normal rat liver photosensitized by aluminum chlorosulphonated phthalocyanine. <i>Photochemistry and Photobiology</i> , 1990 , 51, 343-9	3.6	161
389	High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance. <i>Optics Express</i> , 2003 , 11, 794-809	3.3	160
388	The propagation of optical radiation in tissue I. Models of radiation transport and their application. <i>Lasers in Medical Science</i> , 1991 , 6, 155-168	3.1	160
387	Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm. <i>Medical Physics</i> , 1987 , 14, 835-41	4.4	159
386	Photodynamic therapy for cancer: principles. <i>Canadian Journal of Gastroenterology & Hepatology</i> , 2002 , 16, 393-6		155
385	Protease-triggered photosensitizing beacon based on singlet oxygen quenching and activation. Journal of the American Chemical Society, 2004 , 126, 11450-1	16.4	151
384	Techniques for delivery and monitoring of TOOKAD (WST09)-mediated photodynamic therapy of the prostate: clinical experience and practicalities. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2005 , 79, 211-22	6.7	151
383	Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. <i>Journal of the American Chemical Society</i> , 2012 , 134, 16464-7	16.4	150
382	Vascular-targeted photodynamic therapy (padoporfin, WST09) for recurrent prostate cancer after failure of external beam radiotherapy: a study of escalating light doses. <i>BJU International</i> , 2008 , 102, 556-62	5.6	146
381	Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue. <i>Applied Optics</i> , 1991 , 30, 4474-6	1.7	144
380	Simultaneous two-photon excitation of photofrin in relation to photodynamic therapy. <i>Photochemistry and Photobiology</i> , 2006 , 82, 443-52	3.6	136
379	Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light. <i>Lasers in Medical Science</i> , 1986 , 1, 235-244	3.1	126

378	The propagation of optical radiation in tissue. II: Optical properties of tissues and resulting fluence distributions. <i>Lasers in Medical Science</i> , 1991 , 6, 379-390	3.1	119
377	Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo. <i>Photochemistry and Photobiology</i> , 2002 , 75, 382-91	3.6	118
376	Mueller matrix decomposition for polarized light assessment of biological tissues. <i>Journal of Biophotonics</i> , 2009 , 2, 145-56	3.1	117
375	Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors. <i>Photochemistry and Photobiology</i> , 2004 , 80, 22-30	3.6	116
374	FRET quenching of photosensitizer singlet oxygen generation. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 3203-11	3.4	114
373	Endoscopic Doppler optical coherence tomography in the human GI tract: initial experience. <i>Gastrointestinal Endoscopy</i> , 2005 , 61, 879-90	5.2	113
372	Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements. <i>Journal of Biomedical Optics</i> , 2010 , 15, 067006	3.5	109
371	Development of an In Vivo Raman Spectroscopic System for Diagnostic Applications. <i>Journal of Raman Spectroscopy</i> , 1997 , 28, 131-142	2.3	109
370	New optical technologies for earlier endoscopic diagnosis of premalignant gastrointestinal lesions. Journal of Gastroenterology and Hepatology (Australia), 2002, 17 Suppl, S85-104	4	108
369	Eminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy. <i>Neuro-Oncology</i> , 2011 , 13, 846-56	1	106
368	Quantitative in vitro demonstration of two-photon photodynamic therapy using photofrin and visudyne. <i>Photochemistry and Photobiology</i> , 2007 , 83, 1441-8	3.6	106
367	Experimental tests of the feasibility of singlet oxygen luminescence monitoring in vivo during photodynamic therapy. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 1990 , 5, 69-84	6.7	105
366	Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy. <i>Journal of Biophotonics</i> , 2016 , 9, 1314-1325	3.1	103
365	Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy. <i>Photochemistry and Photobiology</i> , 2003 , 78, 384-92	3.6	102
364	Successful Translation of Fluorescence Navigation During Oncologic Surgery: A Consensus Report. Journal of Nuclear Medicine, 2016 , 57, 144-50	8.9	101
363	Hypoxia promotes ligand-independent EGF receptor signaling via hypoxia-inducible factor-mediated upregulation of caveolin-1. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 4892-7	11.5	101
362	Quantitative fluorescence using 5-aminolevulinic acid-induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery. <i>Journal of Neurosurgery</i> , 2015 , 123, 771-80	3.2	99
361	Insights into photodynamic therapy dosimetry: simultaneous singlet oxygen luminescence and photosensitizer photobleaching measurements. <i>Biophysical Journal</i> , 2012 , 102, 661-71	2.9	98

(2006-2006)

360	High throughput quantification of protein expression of cancer antigens in tissue microarray using quantum dot nanocrystals. <i>Nano Letters</i> , 2006 , 6, 2881-6	11.5	98
359	Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector. <i>Optics Express</i> , 2013 , 21, 5005-13	3.3	97
358	Diblock copolymer micelles deliver hydrophobic protoporphyrin IX for photodynamic therapy. <i>Photochemistry and Photobiology</i> , 2007 , 83, 1505-12	3.6	97
357	In vitro tests of the validity of singlet oxygen luminescence measurements as a dose metric in photodynamic therapy. <i>Cancer Research</i> , 2003 , 63, 7986-94	10.1	97
356	Optical and thermal characterization of natural (Sepia officinalis) melanin. <i>Photochemistry and Photobiology</i> , 1994 , 59, 455-62	3.6	95
355	Stimuli-responsive photoacoustic nanoswitch for in vivo sensing applications. ACS Nano, 2014, 8, 8363-7	'3 6.7	94
354	Intrinsically copper-64-labeled organic nanoparticles as radiotracers. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 13128-31	16.4	94
353	Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 12759-69	3.4	93
352	Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery. <i>Journal of Biomedical Optics</i> , 2011 , 16, 116007	3.5	93
351	Photodynamic therapy of intracranial tissues: a preclinical comparative study of four different photosensitizers. <i>Photomedicine and Laser Surgery</i> , 1998 , 16, 81-91		93
350	A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy. <i>Scientific Reports</i> , 2018 , 8, 1792	4.9	92
349	Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths. <i>Applied Optics</i> , 1995 , 34, 22-30	1.7	91
348	Photodynamic therapy for urological malignancies: past to current approaches. <i>Journal of Urology</i> , 2006 , 175, 1201-7	2.5	90
347	Preclinical studies in normal canine prostate of a novel palladium-bacteriopheophorbide (WST09) photosensitizer for photodynamic therapy of prostate cancers. <i>Photochemistry and Photobiology</i> , 2002 , 76, 438-45	3.6	90
346	X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield. <i>Scientific Reports</i> , 2016 , 6, 1995	4 .9	89
345	Transforming a Targeted Porphyrin Theranostic Agent into a PET Imaging Probe for Cancer. <i>Theranostics</i> , 2011 , 1, 363-70	12.1	89
344	The effects of ex vivo handling procedures on the near-infrared Raman spectra of normal mammalian tissues. <i>Photochemistry and Photobiology</i> , 1996 , 63, 662-71	3.6	89
343	Photodynamic therapy of brain tumorsa work in progress. <i>Lasers in Surgery and Medicine</i> , 2006 , 38, 384	1 -39 6	88

342	Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation. <i>Optics Communications</i> , 2002 , 208, 209-214	2	88
341	Feasibility study on quantitative measurements of singlet oxygen generation using singlet oxygen sensor green. <i>Journal of Fluorescence</i> , 2013 , 23, 41-7	2.4	87
340	Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements. <i>Applied Optics</i> , 1992 , 31, 3509-17	1.7	87
339	Photodynamic therapy of malignant primary brain tumours: clinical effects, post-operative ICP, and light penetration of the brain. <i>Photochemistry and Photobiology</i> , 1987 , 46, 929-35	3.6	86
338	Inherently multimodal nanoparticle-driven tracking and real-time delineation of orthotopic prostate tumors and micrometastases. <i>ACS Nano</i> , 2013 , 7, 4221-32	16.7	85
337	Photodynamic therapy for recurrent supratentorial gliomas. <i>Journal of Surgical Oncology</i> , 1995 , 11, 346	5-54	84
336	Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue. <i>Biophysical Journal</i> , 2012 , 103, 2093-105	2.9	83
335	Quantitative, spectrally-resolved intraoperative fluorescence imaging. <i>Scientific Reports</i> , 2012 , 2, 798	4.9	83
334	Prostate gland: MR imaging appearance after vascular targeted photodynamic therapy with palladium-bacteriopheophorbide. <i>Radiology</i> , 2007 , 244, 196-204	20.5	82
333	Treatment planning and dose analysis for interstitial photodynamic therapy of prostate cancer. <i>Physics in Medicine and Biology</i> , 2009 , 54, 2293-313	3.8	81
332	A multispectral fluorescence imaging system: design and initial clinical tests in intra-operative Photofrin-photodynamic therapy of brain tumors. <i>Lasers in Surgery and Medicine</i> , 2003 , 32, 224-32	3.6	80
331	Comparison of magnetic resonance images and the histopathological findings of lesions induced by interstitial laser photocoagulation in the brain. <i>Lasers in Surgery and Medicine</i> , 1993 , 13, 45-54	3.6	80
330	One- and two-photon activated phototoxicity of conjugated porphyrin dimers with high two-photon absorption cross sections. <i>Organic and Biomolecular Chemistry</i> , 2009 , 7, 897-904	3.9	78
329	Androgen induces adaptation to oxidative stress in prostate cancer: implications for treatment with radiation therapy. <i>Neoplasia</i> , 2007 , 9, 68-80	6.4	78
328	Magnetic resonance imaging of interstitial laser photocoagulation in brain. <i>Lasers in Surgery and Medicine</i> , 1992 , 12, 165-73	3.6	78
327	Pre-clinical in vitro and in vivo studies to examine the potential use of photodynamic therapy in the treatment of osteomyelitis. <i>Photochemical and Photobiological Sciences</i> , 2006 , 5, 31-8	4.2	76
326	High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts. <i>Optics Express</i> , 2003 , 11, 2416-24	3.3	76
325	Optical techniques for the endoscopic detection of dysplastic colonic lesions. <i>Current Opinion in Gastroenterology</i> , 2005 , 21, 70-9	3	75

324	A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology. <i>Physics in Medicine and Biology</i> , 2016 , 61, R370-R400	3.8	72
323	Studies of a vascular-acting photosensitizer, Pd-bacteriopheophorbide (Tookad), in normal canine prostate and spontaneous canine prostate cancer. <i>Lasers in Surgery and Medicine</i> , 2005 , 36, 390-7	3.6	7 ²
322	Fluorescence image-guided brain tumour resection with adjuvant metronomic photodynamic therapy: pre-clinical model and technology development. <i>Photochemical and Photobiological Sciences</i> , 2005 , 4, 438-42	4.2	70
321	A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients. <i>Optics Express</i> , 2010 , 18, 5580-94	4 ^{3.3}	69
320	Why do veins appear blue? A new look at an old question. <i>Applied Optics</i> , 1996 , 35, 1151	1.7	69
319	Interstitial Doppler optical coherence tomography. <i>Optics Letters</i> , 2005 , 30, 1791-3	3	68
318	Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging. <i>Bioconjugate Chemistry</i> , 2014 , 25, 796-801	6.3	67
317	A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations. <i>Physics in Medicine and Biology</i> , 2001 , 46, 369-83	3.8	67
316	In Vivo Fluorescence Spectroscopy and Imaging for Oncological Applications. <i>Photochemistry and Photobiology</i> , 1998 , 68, 603	3.6	66
315	High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis. <i>Optics Express</i> , 2003 , 11, 1650-8	3.3	65
314	Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: potential for targeting experimental brain tumors. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2014 , 10, 1075-87	6	64
313	Critical role for Fas-associated death domain-like interleukin-1-converting enzyme-like inhibitory protein in anoikis resistance and distant tumor formation. <i>Journal of the National Cancer Institute</i> , 2007 , 99, 811-22	9.7	64
312	In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy. <i>Photochemistry and Photobiology</i> , 2000 , 72, 146-50	3.6	64
311	Increased brain tumor resection using fluorescence image guidance in a preclinical model. <i>Lasers in Surgery and Medicine</i> , 2004 , 35, 181-90	3.6	63
310	Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues. <i>Journal of Biomedical Optics</i> , 2010 , 15, 047009	3.5	62
309	Complete blood vessel occlusion in the chick chorioallantoic membrane using two-photon excitation photodynamic therapy: implications for treatment of wet age-related macular degeneration. <i>Journal of Biomedical Optics</i> , 2007 , 12, 034025	3.5	61
308	Stable J-aggregation enabled dual photoacoustic and fluorescence nanoparticles for intraoperative cancer imaging. <i>Nanoscale</i> , 2016 , 8, 12618-25	7.7	59
307	Nano-enabled SERS reporting photosensitizers. <i>Theranostics</i> , 2015 , 5, 469-76	12.1	58

306	Changes in in vivo optical properties and light distributions in normal canine prostate during photodynamic therapy. <i>Radiation Research</i> , 1997 , 147, 86-91	3.1	57
305	Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy. <i>Lasers in Surgery and Medicine</i> , 2006 , 38, 754-61	3.6	57
304	Photodynamic therapy for malignant newly diagnosed supratentorial gliomas. <i>Photomedicine and Laser Surgery</i> , 1996 , 14, 263-70		56
303	Porphyrin-lipid stabilized gold nanoparticles for surface enhanced Raman scattering based imaging. <i>Bioconjugate Chemistry</i> , 2012 , 23, 1726-30	6.3	55
302	Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study. <i>Cancer Research</i> , 2008 , 68, 9987-95	10.1	55
301	Photodynamic therapy of malignant brain tumours. <i>Canadian Journal of Neurological Sciences</i> , 1990 , 17, 193-8	1	55
300	Magnetic resonance imaging correlated with the histopathological effect of Pd-bacteriopheophorbide (Tookad) photodynamic therapy on the normal canine prostate gland. <i>Lasers in Surgery and Medicine</i> , 2006 , 38, 672-81	3.6	54
299	Concentration measurements of multiple analytes in human sera by near-infrared laser Raman spectroscopy. <i>Applied Optics</i> , 1999 , 38, 5491-8	1.7	54
298	Resistance to photodynamic therapy in radiation induced fibrosarcoma-1 and Chinese hamster ovary-multi-drug resistant. Cells in vitro. <i>Photochemistry and Photobiology</i> , 1991 , 54, 307-12	3.6	54
297	A tumor mRNA-triggered photodynamic molecular beacon based on oligonucleotide hairpin control of singlet oxygen production. <i>Photochemical and Photobiological Sciences</i> , 2008 , 7, 775-81	4.2	53
296	Quantitative and qualitative 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in skull base meningiomas. <i>Neurosurgical Focus</i> , 2011 , 30, E8	4.2	52
295	A solubilization technique for photosensitizer quantification in ex vivo tissue samples. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 1997 , 39, 229-35	6.7	49
294	Comparison of the In Vivo Photodynamic Threshold Dose for Photofrin, Mono- and Tetrasulfonated Aluminum Phthalocyanine Using a Rat Liver Model. <i>Photochemistry and Photobiology</i> , 1998 , 68, 394-399	3.6	49
293	Modeling of photosensitizer fluorescence emission and photobleaching for photodynamic therapy dosimetry. <i>Applied Optics</i> , 1998 , 37, 7168-83	1.7	49
292	Inactivating hepatitis C virus in donor lungs using light therapies during normothermic ex vivo lung perfusion. <i>Nature Communications</i> , 2019 , 10, 481	17.4	48
291	5-Aminolevulinic acid-induced protoporphyrin IX fluorescence in meningioma: qualitative and quantitative measurements in vivo. <i>Operative Neurosurgery</i> , 2014 , 10 Suppl 1, 74-82; discussion 82-3	1.6	48
290	The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response. <i>Photochemistry and Photobiology</i> , 2011 , 87, 223-34	3.6	48
289	Mitochondrial photosensitization by Photofrin II. <i>Photochemistry and Photobiology</i> , 1987 , 46, 645-9	3.6	48

(2013-2012)

288	Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit. <i>Biomedical Optics Express</i> , 2012 , 3, 1557-64	3.5	47	
287	Effects of Pd-bacteriopheophorbide (TOOKAD)-mediated photodynamic therapy on canine prostate pretreated with ionizing radiation. <i>Radiation Research</i> , 2004 , 161, 723-31	3.1	47	
286	Photodynamic therapy: cavitary photoillumination of malignant cerebral tumours using a laser coupled inflatable balloon. <i>Canadian Journal of Neurological Sciences</i> , 1985 , 12, 371-3	1	47	
285	Changes of collagen ultrastructure in breast cancer tissue determined by second-harmonic generation double Stokes-Mueller polarimetric microscopy. <i>Biomedical Optics Express</i> , 2016 , 7, 4054-40	6 8 5	47	
284	Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles. <i>Journal of Computational Physics</i> , 1989 , 81, 137-150	4.1	46	
283	Rapid ratiometric biomarker detection with topically applied SERS nanoparticles. <i>Technology</i> , 2014 , 2, 118-132	3	45	
282	Endoscopic detection of early upper GI cancers. <i>Baillierel</i> Best Practice and Research in Clinical Gastroenterology, 2005 , 19, 833-56	2.5	45	
281	Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo. <i>Journal of Biomedical Optics</i> , 2013 , 18, 046011	3.5	44	
280	Point-of-care autofluorescence imaging for real-time sampling and treatment guidance of bioburden in chronic wounds: first-in-human results. <i>PLoS ONE</i> , 2015 , 10, e0116623	3.7	44	
279	Facile synthesis of Raman active phospholipid gold nanoparticles. <i>Bioconjugate Chemistry</i> , 2010 , 21, 217	7&832	43	
278	Similarity relations for the interaction parameters in radiation transport. <i>Applied Optics</i> , 1989 , 28, 5243-	- 9 1.7	43	
277	Assessment of Cutaneous Photosensitivity of TOOKAD (WST09) in Preclinical Animal Models and in Patients¶. <i>Photochemistry and Photobiology</i> , 2005 , 81, 106	3.6	43	
276	Multimodal bacteriochlorophyll theranostic agent. <i>Theranostics</i> , 2011 , 1, 354-62	12.1	42	
275	Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo. <i>Journal of Biomedical Optics</i> , 2009 , 14, 014029	3.5	42	
274	The influence of hypoxia on bioluminescence in luciferase-transfected gliosarcoma tumor cells in vitro. <i>Photochemical and Photobiological Sciences</i> , 2008 , 7, 675-80	4.2	42	
273	Nanoparticle targeted folate receptor 1-enhanced photodynamic therapy for lung cancer. <i>Lung Cancer</i> , 2017 , 113, 59-68	5.9	41	
272	Glioblastoma multiforme treatment with clinical trials for surgical resection (aminolevulinic acid). <i>Neurosurgery Clinics of North America</i> , 2012 , 23, 371-7	4	41	
271	System and methods for wide-field quantitative fluorescence imaging during neurosurgery. <i>Optics Letters</i> , 2013 , 38, 2786-8	3	41	

270	"Zipper" molecular beacons: a generalized strategy to optimize the performance of activatable protease probes. <i>Bioconjugate Chemistry</i> , 2009 , 20, 1836-42	6.3	41
269	Detection and treatment of dysplasia in Barrett's esophagus: a pivotal challenge in translating biophotonics from bench to bedside. <i>Journal of Biomedical Optics</i> , 2007 , 12, 051401	3.5	40
268	Fluorescence and spectral imaging. Scientific World Journal, The, 2007, 7, 2046-71	2.2	39
267	Micromachined array tip for multifocus fiber-based optical coherence tomography. <i>Optics Letters</i> , 2004 , 29, 1754-6	3	38
266	Light-Induced Fluorescence Endoscopy of the Gastrointestinal Tract. <i>Gastrointestinal Endoscopy Clinics of North America</i> , 2000 , 10, 37-69	3.3	38
265	Doppler optical coherence tomography monitoring of microvascular tissue response during photodynamic therapy in an animal model of Barrett's esophagus. <i>Gastrointestinal Endoscopy</i> , 2007 , 66, 326-33	5.2	37
264	Photodiagnostic techniques for the endoscopic detection of premalignant gastrointestinal lesions. Digestive Endoscopy, 2003 , 15, 153-173	3.7	37
263	Spatial frequency domain tomography of protoporphyrin IX fluorescence in preclinical glioma models. <i>Journal of Biomedical Optics</i> , 2012 , 17, 056008	3.5	36
262	Absorbed photodynamic dose from pulsed versus continuous wave light examined with tissue-simulating dosimeters. <i>Applied Optics</i> , 1997 , 36, 7257-69	1.7	36
261	Intravital high-resolution optical imaging of individual vessel response to photodynamic treatment. Journal of Biomedical Optics, 2008 , 13, 040502	3.5	36
260	Wide-field multiplexed imaging of EGFR-targeted cancers using topical application of NIR SERS nanoprobes. <i>Nanomedicine</i> , 2015 , 10, 89-101	5.6	35
259	Quantitative Reflectance Spectrophotometry For The Noninvasive Measurement Of Photosensitizer Concentration In Tissue During Photodynamic Therapy 1989 ,		35
258	Calculation of radiation doses for nonuniformity distributed beta and gamma radionuclides in soft tissue. <i>Medical Physics</i> , 1985 , 12, 405-12	4.4	35
257	Characterization of collagen in non-small cell lung carcinoma with second harmonic polarization microscopy. <i>Biomedical Optics Express</i> , 2014 , 5, 3562-7	3.5	34
256	Autofluorescence-guided surveillance for oral cancer. Cancer Prevention Research, 2009, 2, 966-74	3.2	34
255	Efficiency of singlet oxygen production from self-assembled nanospheres of molecular micelle-like photosensitizers FC4S. <i>Journal of Materials Chemistry</i> , 2005 , 15, 1857		34
254	Imaging of Photodynamically Generated Singlet Oxygen Luminescence In Vivo¶. <i>Photochemistry and Photobiology</i> , 2005 , 81, 941	3.6	34
253	Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proof-of-principle and validation with nodal obstruction. <i>Scientific Reports</i> , 2017 , 7, 45008	4.9	33

(1998-2010)

of breast cancer metastasis using the photosensitizer BPD-MA (Verteporfin). <i>Breast Cancer Research and Treatment</i> , 2010 , 119, 325-33	4.4	33	
Beyond bisphosphonates: photodynamic therapy structurally augments metastatically involved vertebrae and destroys tumor tissue. <i>Breast Cancer Research and Treatment</i> , 2010 , 124, 111-9	4.4	33	
Autofluorescence-based detection of early neoplasia in patients with Barrett's esophagus. <i>Digestive Diseases</i> , 2004 , 22, 134-41	3.2	33	
The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systems. <i>Electrophoresis</i> , 2004 , 25, 3740-5	3.6	33	
Ultrastructural features of collagen in thyroid carcinoma tissue observed by polarization second harmonic generation microscopy. <i>Biomedical Optics Express</i> , 2015 , 6, 3475-81	3.5	32	
Optical Coherence Tomography: A Novel Imaging Method for Post-lumpectomy Breast Margin Assessment-A Multi-reader Study. <i>Academic Radiology</i> , 2018 , 25, 279-287	4.3	32	
Continuous docetaxel chemotherapy improves therapeutic efficacy in murine models of ovarian cancer. <i>Molecular Cancer Therapeutics</i> , 2010 , 9, 1820-30	6.1	32	
Imaging of specific activation of photodynamic molecular beacons in breast cancer vertebral metastases. <i>Bioconjugate Chemistry</i> , 2011 , 22, 1021-30	6.3	31	
Gadolinium- and 5-aminolevulinic acid-induced protoporphyrin IX levels in human gliomas: an ex vivo quantitative study to correlate protoporphyrin IX levels and blood-brain barrier breakdown. <i>Journal of Neuropathology and Experimental Neurology</i> , 2012 , 71, 806-13	3.1	30	
Using the singlet oxygen scavenging property of carotenoid in photodynamic molecular beacons to minimize photodamage to non-targeted cells. <i>Photochemical and Photobiological Sciences</i> , 2007 , 6, 131	1 - 7 ²	30	
Doppler optical coherence tomography with a micro-electro-mechanical membrane mirror for high-speed dynamic focus tracking. <i>Optics Letters</i> , 2006 , 31, 1262-4	3	30	
Challenges and opportunities in clinical translation of biomedical optical spectroscopy and imaging. <i>Journal of Biomedical Optics</i> , 2018 , 23, 1-13	3.5	30	
Metabolic targeting of HIF-dependent glycolysis reduces lactate, increases oxygen consumption and enhances response to high-dose single-fraction radiotherapy in hypoxic solid tumors. <i>BMC Cancer</i> , 2017 , 17, 418	4.8	29	
Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility. <i>Biomedical Optics Express</i> , 2012 , 3, 911-9	3.5	29	
Bioluminescence Imaging of the Response of Rat Gliosarcoma to ALA-PpIXThediated Photodynamic Therapy¶. <i>Photochemistry and Photobiology</i> , 2004 , 80, 242	3.6	29	
Head & neck optical diagnostics: vision of the future of surgery. Head & Neck Oncology, 2009, 1, 25		28	
Spectroscopy and fluorescence in esophageal diseases. <i>Baillierels Best Practice and Research in Clinical Gastroenterology</i> , 2006 , 20, 41-57	2.5	28	
Light Dosimetry for Intraperitoneal Photodynamic Therapy in a Murine Xenograft Model of Human Epithelial Ovarian Carcinoma. <i>Photochemistry and Photobiology</i> , 1998 , 68, 281-288	3.6	27	
	of breast cancer metastasis using the photosensitizer BPD-MA (Verteporfin). Breast Cancer Research and Treatment, 2010, 119, 325-33 Beyond bisphosphonates: photodynamic therapy structurally augments metastatically involved vertebrae and destroys tumor tissue. Breast Cancer Research and Treatment, 2010, 124, 111-9 Autofluorescence-based detection of early neoplasia in patients with Barrett's esophagus. Digestive Diseases, 2004, 22, 134-41 The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systems. Electrophoresis, 2004, 25, 3740-5 Ultrastructural features of collagen in thyroid carcinoma tissue observed by polarization second harmonic generation microscopy. Biomedical Optics Express, 2015, 6, 3475-81 Optical Coherence Tomography: A Novel Imaging Method for Post-lumpectomy Breast Margin Assessment-A Multi-reader Study. Academic Radiology, 2018, 25, 279-287 Continuous docetaxel chemotherapy improves therapeutic efficacy in murine models of ovarian cancer. Molecular Cancer Therapeutics, 2010, 9, 1820-30 Imaging of specific activation of photodynamic molecular beacons in breast cancer vertebral metastases. Bioconjugate Chemistry, 2011, 22, 1021-30 Gadolinium- and 5-aminolevulinic acid-induced protoporphyrin IX levels in human gliomas: an ex vivo quantitative study to correlate protoporphyrin IX levels and blood-brain barrier breakdown. Journal of Neuropathology and Experimental Neurology, 2012, 71, 806-13 Using the singlet oxygen scavenging property of carotenoid in photodynamic molecular beacons to minimize photodamage to non-targeted cells. Photochemical and Photobiological Sciences, 2007, 6, 131 Doppler optical coherence tomography with a micro-electro-mechanical membrane mirror for high-speed dynamic focus tracking. Optics Letters, 2006, 31, 1262-4 Challenges and opportunities in clinical translation of biomedical optical spectroscopy and imaging. Journal of Biomedical Optics, 2018, 23, 1-13 Metabolic targeting of HIF-dependent glycol	of breast cancer metastasis using the photosensitizer BPD-MA (Verteporfin). Breast Cancer Research and Treatment, 2010, 119, 325-33 Beyond bisphosphonaters: photodynamic therapy structurally augments metastatically involved vertebrae and destroys tumor tissue. Breast Cancer Research and Treatment, 2010, 124, 111-9 Autofluorescence-based detection of early neoplasia in patients with Barrett's esophagus. Digestive Diseases, 2004, 22, 134-41 The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systems. Electrophoresis, 2004, 25, 3740-5 Ultrastructural features of collagen in thyroid carcinoma tissue observed by polarization second harmonic generation microscopy. Biomedical Optics Express, 2015, 6, 3475-81 Optical Coherence Tomography: A Novel Imaging Method for Post-lumpectomy Breast Margin Assessment-A Multi-reader Study. Academic Radiology, 2018, 25, 279-287 Continuous docetaxel chemotherapy improves therapeutic efficacy in murine models of ovarian cancer. Molecular Cancer Therapeutics, 2010, 9, 1820-30 Imaging of specific activation of photodynamic molecular beacons in breast cancer vertebral metastasses. Bioconjugate Chemistry, 2011, 22, 1021-30 Gadolinum- and 5-aminolevulinic acid-induced protoporphyrin IX levels in human gliomas: an exvivo quantitative study to correlate protoporphyrin IX levels and blood-brain barrier breakdown. Journal of Neuropathology and Experimental Neurology, 2012, 71, 806-13 Using the singlet oxygen scavenging property of carotenoid in photodynamic molecular beacons to minimize photodamage to non-targeted cells. Photochemical and Photobiological Sciences, 2007, 6, 1311-57 Doppler optical coherence tomography with a micro-electro-mechanical membrane mirror for high-speed dynamic focus tracking. Optic Secters, 2006, 31, 1262-4 Challenges and opportunities in clinical translation of biomedical optical spectroscopy and imaging. Journal of Biomedical Optics, 2018, 23, 1-13 Metabolic targeting of HIF-dependent g	of breast cancer metastasis using the photosensitizer BPD-MA (Verteporfin). Breast Cancer Research and Treatment, 2010, 119, 325-33 Beyond bisphosphonates: photodynamic therapy structurally augments metastatically involved vertebrae and destroys tumor tissue. Breast Cancer Research and Treatment, 2010, 124, 111-9 Autofluorescence-based detection of early neoplasia in patients with Barrett's esophagus. Digestive Diseases, 2004, 22, 134-41 The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systems. Electrophoresis, 2004, 25, 3740-5 Ultrastructural features of collagen in thyroid carcinoma tissue observed by polarization second harmonic generation microscopy. Biomedical Optics Express, 2015, 6, 3475-81 Optical Coherence Tomography: A Novel Imaging Method for Post-lumpectomy Breast Margin Assessment-A Multi-reader Study. Academic Radiology, 2018, 25, 279-287 Continuous docetaxel chemotherapy improves therapeutic efficacy in murine models of ovarian cancer. Molecular Cancer Therapeutics, 2010, 9, 1820-30 Imaging of specific activation of photodynamic molecular beacons in breast cancer vertebral metastases. Bioconjugate Chemistry, 2011, 22, 1021-30 Gadolinium- and 5-aminolevulinic acid-induced protoporphyrin IX levels in human gliomas: an exvivo quantitative study to correlate protoporphyrin IX levels and blood-brain barrier breakdown. Journal of Neuropathology and Experimental Neurology, 2012, 71, 806-13 Using the singlet oxygen scavenging property of carotenoid in photodynamic molecular beacons to minimize photodamage to non-targeted cells. Photochemical and Photobiological Sciences, 2007, 6, 1311-77 Doppler optical coherence tomography with a micro-electro-mechanical membrane mirror for high-speed dynamic focus tracking. Optics Letters, 2006, 31, 1262-4 Challenges and opportunities in clinical translation of biomedical optical spectroscopy and imaging. Journal of Blomedical Optics Express, 2012, 3, 911-9 Bloluminescence Imaging of the

234	Diagnostic potential of Raman spectroscopy in Barrett's esophagus 2005,		26
233	Current and future trends in laser medicine. <i>Photochemistry and Photobiology</i> , 1991 , 53, 731-8	3.6	26
232	Photodynamic therapy of malignant brain tumours. <i>Lasers in Medical Science</i> , 1990 , 5, 245-252	3.1	26
231	Chromatographic analysis and tissue distribution of radiocopper-labelled haematoporphyrin derivatives. <i>Lasers in Medical Science</i> , 1988 , 3, 71-80	3.1	26
230	Red-light excitation of protoporphyrin IX fluorescence for subsurface tumor detection. <i>Journal of Neurosurgery</i> , 2018 , 128, 1690-1697	3.2	26
229	Uroporphyrinogen decarboxylase is a radiosensitizing target for head and neck cancer. <i>Science Translational Medicine</i> , 2011 , 3, 67ra7	17.5	25
228	The effect of Tookad-mediated photodynamic ablation of the prostate gland on adjacent tissuesin vivo study in a canine model. <i>Photochemical and Photobiological Sciences</i> , 2007 , 6, 1318-24	4.2	25
227	Photodynamic therapy of vertebral metastases: evaluating tumor-to-neural tissue uptake of BPD-MA and ALA-PpIX in a murine model of metastatic human breast carcinoma. <i>Photochemistry and Photobiology</i> , 2007 , 83, 1034-9	3.6	25
226	Use of photodynamic therapy in the palliation of massive advanced rectal cancer. Phase I/II study. <i>Diseases of the Colon and Rectum</i> , 1991 , 34, 600-4; discussion 604-5	3.1	25
225	Mapping ALA-induced PPIX fluorescence in normal brain and brain tumour using confocal fluorescence microscopy. <i>International Journal of Oncology</i> , 2004 , 25, 37-45	1	25
224	Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography. <i>Journal of Biomedical Optics</i> , 2016 , 21, 081210	3.5	24
223	Interstitial Doppler optical coherence tomography monitors microvascular changes during photodynamic therapy in a Dunning prostate model under varying treatment conditions. <i>Journal of Biomedical Optics</i> , 2007 , 12, 034022	3.5	24
222	Biologically-targeted detection of primary and micro-metastatic ovarian cancer. <i>Theranostics</i> , 2013 , 3, 420-7	12.1	23
221	Facile synthesis of advanced photodynamic molecular beacon architectures. <i>Bioconjugate Chemistry</i> , 2010 , 21, 1023-5	6.3	23
220	Analysis of layered scattering materials by pulsed photothermal radiometry: application to photon propagation in tissue. <i>Applied Optics</i> , 1995 , 34, 2973-82	1.7	23
219	Controlling Spatial Heat and Light Distribution by Using Photothermal Enhancing Auto-Regulated Liposomes (PEARLs). <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 10003-7	16.4	22
218	Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo. <i>Journal of Biomedical Optics</i> , 2012 , 17, 076017	3.5	22
217	Temperature-dependent changes in the optical absorption and scattering spectra of tissues: correlation with ultrastructure 1993 ,		22

(2018-2020)

216	Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer. <i>Advanced Science</i> , 2020 , 7, 2003584	13.6	21
215	Nanoparticle-Enabled Selective Destruction of Prostate Tumor Using MRI-Guided Focal Photothermal Therapy. <i>Prostate</i> , 2016 , 76, 1169-81	4.2	21
214	High-resolution angioscopic imaging during endovascular neurosurgery. <i>Neurosurgery</i> , 2014 , 75, 171-80; discussion 179-80	3.2	21
213	Definitions and Overview of Tissue Optics 1995 , 15-46		21
212	An Integrated Nanotechnology-Enabled Transbronchial Image-Guided Intervention Strategy for Peripheral Lung Cancer. <i>Cancer Research</i> , 2016 , 76, 5870-5880	10.1	20
211	Diffuse reflectance spectroscopy in Barrett's esophagus: developing a large field-of-view screening method discriminating dysplasia from metaplasia. <i>Journal of Biophotonics</i> , 2014 , 7, 304-11	3.1	20
210	Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry 1990 ,		20
209	Evaluation of one- and two-photon activated photodynamic therapy with pyropheophorbide-a methyl ester in human cervical, lung and ovarian cancer cells. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2014 , 132, 102-10	6.7	19
208	Advances in engineering of high contrast CARS imaging endoscopes. <i>Optics Express</i> , 2014 , 22, 25053-64	3.3	19
207	Design, Fabrication, and Characteristics of a MEMS Micromirror With Sidewall Electrodes. <i>Journal of Microelectromechanical Systems</i> , 2010 , 19, 619-631	2.5	19
206	Oncolytic targeting of renal cell carcinoma via encephalomyocarditis virus. <i>EMBO Molecular Medicine</i> , 2010 , 2, 275-88	12	19
205	Multimodality imaging for vertebral metastases in a rat osteolytic model. <i>Clinical Orthopaedics and Related Research</i> , 2007 , 454, 230-6	2.2	19
204	Measurement of Tissue Optical Properties: Methods and Theories 1995, 233-303		19
203	Collagen chirality and three-dimensional orientation studied with polarimetric second-harmonic generation microscopy. <i>Journal of Biophotonics</i> , 2019 , 12, e201800241	3.1	19
202	Fluorescence-guided surgery and intervention - An AAPM emerging technology blue paper. <i>Medical Physics</i> , 2018 , 45, 2681-2688	4.4	18
201	Quantitative spatial frequency fluorescence imaging in the sub-diffusive domain for image-guided glioma resection. <i>Biomedical Optics Express</i> , 2015 , 6, 4923-33	3.5	18
200	Beyond radiation therapy: photodynamic therapy maintains structural integrity of irradiated healthy and metastatically involved vertebrae in a pre-clinical in vivo model. <i>Breast Cancer Research and Treatment</i> , 2012 , 135, 391-401	4.4	18
199	Optical and x-ray technology synergies enabling diagnostic and therapeutic applications in medicine. <i>Journal of Biomedical Optics</i> , 2018 , 23, 1-17	3.5	18

198	Biophotonics: the big picture. Journal of Biomedical Optics, 2017, 23, 1-7	3.5	18
197	Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance. <i>Journal of Biomedical Optics</i> , 2015 , 20, 26002	3.5	17
196	Orthotopic lung cancer murine model by nonoperative transbronchial approach. <i>Annals of Thoracic Surgery</i> , 2014 , 97, 1771-5	2.7	17
195	Topographic mapping of subsurface fluorescent structures in tissue using multiwavelength excitation. <i>Journal of Biomedical Optics</i> , 2010 , 15, 066026	3.5	17
194	Imaging the modulation of adenoviral kinetics and biodistribution for cancer gene therapy. <i>Molecular Therapy</i> , 2007 , 15, 921-9	11.7	17
193	In vivo resistance to photofrin-mediated photodynamic therapy in radiation-induced fibrosarcoma cells resistant to in vitro Photofrin-mediated photodynamic therapy. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 1999 , 49, 136-41	6.7	17
192	Effects of light beam size on fluence distribution and depth of necrosis in superficially applied photodynamic therapy of normal rat brain. <i>Photochemistry and Photobiology</i> , 1992 , 56, 379-84	3.6	17
191	Assessment of cutaneous photosensitivity of TOOKAD (WST09) in preclinical animal models and in patients. <i>Photochemistry and Photobiology</i> , 2005 , 81, 106-13	3.6	17
190	Development and first in-human use of a Raman spectroscopy guidance system integrated with a brain biopsy needle. <i>Journal of Biophotonics</i> , 2019 , 12, e201800396	3.1	17
189	Porphyrin-High-Density Lipoprotein: A Novel Photosensitizing Nanoparticle for Lung Cancer Therapy. <i>Annals of Thoracic Surgery</i> , 2019 , 107, 369-377	2.7	17
188	Photodynamic Therapy for the Treatment of Vertebral Metastases: A Phase I Clinical Trial. <i>Clinical Cancer Research</i> , 2019 , 25, 5766-5776	12.9	16
187	A compact fiber-optic probe-based singlet oxygen luminescence detection system. <i>Journal of Biophotonics</i> , 2017 , 10, 320-326	3.1	16
186	Quantitative monitoring of radiation induced skin toxicities in nude mice using optical biomarkers measured from diffuse optical reflectance spectroscopy. <i>Biomedical Optics Express</i> , 2014 , 5, 1309-20	3.5	16
185	A 2-D Micromachined SOI MEMS Mirror With Sidewall Electrodes for Biomedical Imaging. <i>IEEE/ASME Transactions on Mechatronics</i> , 2010 , 15, 501-510	5.5	16
184	Effects of photodynamic therapy on the structural integrity of vertebral bone. <i>Spine</i> , 2010 , 35, 272-7	3.3	16
183	Autofluorescence and Photofrin-induced fluorescence imaging and spectroscopy in an animal model of oral cancer. <i>Photodiagnosis and Photodynamic Therapy</i> , 2006 , 3, 168-76	3.5	16
182	Low power interstitial Nd-YAG laser photocoagulation in normal rabbit brain. <i>Lasers in Medical Science</i> , 1992 , 7, 433-439	3.1	16
181	Porphysome nanoparticles for enhanced photothermal therapy in a patient-derived orthotopic pancreas xenograft cancer model: a pilot study. <i>Journal of Biomedical Optics</i> , 2016 , 21, 84002	3.5	16

(1991-2014)

180	Dynamic contrast enhanced MRI as a predictor of vascular-targeted photodynamic focal ablation therapy outcome in prostate cancer post-failed external beam radiation therapy. <i>Canadian Urological Association Journal</i> , 2014 , 8, E708-14	1.2	15	
179	The benefits of photodynamic therapy on vertebral bone are maintained and enhanced by combination treatment with bisphosphonates and radiation therapy. <i>Journal of Orthopaedic Research</i> , 2013 , 31, 1398-405	3.8	15	
178	Oxygen-independent degradation of HIF-alpha via bioengineered VHL tumour suppressor complex. <i>EMBO Molecular Medicine</i> , 2009 , 1, 66-78	12	15	
177	Interstitial in vivo ALA-PpIX mediated metronomic photodynamic therapy (mPDT) using the CNS-1 astrocytoma with bioluminescence monitoring. <i>Photodiagnosis and Photodynamic Therapy</i> , 2007 , 4, 202	- 1²⁵	15	
176	Hepatic interstitial laser photocoagulation. An investigation of the relationship between acute thermal lesions and their sonographic images. <i>Investigative Radiology</i> , 1994 , 29, 915-21	10.1	15	
175	Hybrid Monte Carlo - Diffusion Theory Modelling Of Light Distributions In Tissue. 1988 , 0908, 20		15	
174	SINGLET OXYGEN DETECTION DURING PHOTOSENSITIZATION. <i>Journal of Innovative Optical Health Sciences</i> , 2013 , 06, 1330002	1.2	14	
173	Feasibility study of autofluorescence mammary ductoscopy. <i>Journal of Biomedical Optics</i> , 2009 , 14, 044	03. 6	14	
172	Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast. Journal of Biomedical Optics, 2011 , 16, 016013	3.5	14	
171	In vivo Doppler optical coherence tomography of mucocutaneous telangiectases in hereditary hemorrhagic telangiectasia. <i>Gastrointestinal Endoscopy</i> , 2003 , 58, 591-8	5.2	14	
170	A Comparison of Singlet Oxygen Explicit Dosimetry (SOED) and Singlet Oxygen Luminescence Dosimetry (SOLD) for Photofrin-Mediated Photodynamic Therapy. <i>Cancers</i> , 2016 , 8,	6.6	14	
169	Photodynamic therapy: light delivery and dosage for second-generation photosensitizers. <i>Novartis Foundation Symposium</i> , 1989 , 146, 60-73; discussion 73-7		14	
168	Studies of HPD and radiolabelled HPD in-vivo and in-vitro. <i>Advances in Experimental Medicine and Biology</i> , 1985 , 193, 51-67	3.6	14	
167	Characterization of Pancreatic Cancer Tissue Using Multiphoton Excitation Fluorescence and Polarization-Sensitive Harmonic Generation Microscopy. <i>Frontiers in Oncology</i> , 2019 , 9, 272	5.3	13	
166	Improved sensitivity to fluorescence for cancer detection in wide-field image-guided neurosurgery. <i>Biomedical Optics Express</i> , 2015 , 6, 5063-74	3.5	13	
165	Metronomic photodynamic therapy (mPDT): concepts and technical feasibility in brain tumor 2003,		13	
164	Photofrin photodynamic therapy for malignant brain tumors 2001,		13	
163	Dependence of photodynamic threshold dose on treatment parameters in normal rat liver in vivo 1991 , 1426, 146		13	

162	Complex Susceptibilities and Chiroptical Effects of Collagen Measured with Polarimetric Second-Harmonic Generation Microscopy. <i>Scientific Reports</i> , 2019 , 9, 12488	4.9	12
161	A prototype hand-held tri-modal instrument for in vivo ultrasound, photoacoustic, and fluorescence imaging. <i>Review of Scientific Instruments</i> , 2015 , 86, 034901	1.7	12
160	Preclinical evaluation of spatial frequency domain-enabled wide-field quantitative imaging for enhanced glioma resection. <i>Journal of Biomedical Optics</i> , 2017 , 22, 76007	3.5	12
159	Drug and light dose responses to focal photodynamic therapy of single blood vessels in vivo. Journal of Biomedical Optics, 2009 , 14, 064006	3.5	12
158	Effect of dimerization on vibrational spectra of eumelanin precursors. <i>Photochemistry and Photobiology</i> , 2008 , 84, 613-9	3.6	12
157	Radiance-based monitoring of the extent of tissue coagulation during laser interstitial thermal therapy. <i>Optics Letters</i> , 2004 , 29, 959-61	3	12
156	Bioluminescence imaging of the response of rat gliosarcoma to ALA-PpIX-mediated photodynamic therapy. <i>Photochemistry and Photobiology</i> , 2004 , 80, 242-9	3.6	12
155	Imaging of photodynamically generated singlet oxygen luminescence in vivo. <i>Photochemistry and Photobiology</i> , 2005 , 81, 941-3	3.6	12
154	The Yin and Yang of PDT and PTT. <i>Photochemistry and Photobiology</i> , 2020 , 96, 219-231	3.6	12
153	Dual-Agent Photodynamic Therapy with Optical Clearing Eradicates Pigmented Melanoma in Preclinical Tumor Models. <i>Cancers</i> , 2020 , 12,	6.6	12
152	Intrinsically Copper-64-Labeled Organic Nanoparticles as Radiotracers. <i>Angewandte Chemie</i> , 2012 , 124, 13305-13308	3.6	11
151	The effects of oxygenation and photosensitizer substrate binding on the use of fluorescence photobleaching as a dose metric for photodynamic therapy. <i>Vibrational Spectroscopy</i> , 2002 , 28, 25-35	2.1	11
150	Polarimetric second-harmonic generation microscopy of the hierarchical structure of collagen in stage I-III non-small cell lung carcinoma. <i>Biomedical Optics Express</i> , 2020 , 11, 1851-1863	3.5	11
149	Adjuncts for maximizing resection: 5-aminolevuinic acid. <i>Neurosurgery</i> , 2012 , 59, 75-8	3.2	10
148	Confocal fluorescence microscopy, microspectrofluorimetry, and modeling studies of laser-induced fluorescence endoscopy (LIFE) of human colon tissue 1997 , 2975, 98		10
147	Computer processing of perfusion, ventilation, and V/Q images to highlight pulmonary embolism. <i>European Journal of Nuclear Medicine and Molecular Imaging</i> , 1981 , 6, 309-15		10
146	Porphyrin-lipid nanovesicles (Porphysomes) are effective photosensitizers for photodynamic therapy. <i>Nanophotonics</i> , 2021 , 10, 3161-3168	6.3	10
145	Macroscopic-imaging technique for subsurface quantification of near-infrared markers during surgery. <i>Journal of Biomedical Optics</i> , 2015 , 20, 036014	3.5	9

144	Measurement of Ex Vivo and In Vivo Tissue Optical Properties: Methods and Theories 2010 , 267-319		9
143	Cross-resistance to photofrin-mediated photodynamic therapy and UV light and recovery from photodynamic therapy damage in Rif-8A mouse fibrosarcoma cells measured using viral capacity. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 1997 , 38, 143-51	6.7	9
142	Metronomic Photodynamic Therapy as a New Paradigm for Photodynamic Therapy: Rationale and Preclinical Evaluation of Technical Feasibility for Treating Malignant Brain Tumors¶. <i>Photochemistry and Photobiology</i> , 2007 , 80, 22-30	3.6	9
141	Metronomic photodynamic therapy (mPDT) for intracranial neoplasm: physiological, biological, and dosimetry considerations 2003 ,		9
140	Changing effect of i.c.v. IL-1 beta on vasopressin release in anaesthetized, female rats at different stages of lactation: role of prostaglandins and noradrenaline. <i>Journal of Neuroendocrinology</i> , 1996 , 8, 915-20	3.8	9
139	Instrumentation for in-vivo tissue spectroscopy and imaging 1993,		9
138	Subtherapeutic Photodynamic Treatment Facilitates Tumor Nanomedicine Delivery and Overcomes Desmoplasia. <i>Nano Letters</i> , 2021 , 21, 344-352	11.5	9
137	Sub-diffuse interstitial optical tomography to improve the safety of brain needle biopsies: a proof-of-concept study. <i>Optics Letters</i> , 2015 , 40, 170-3	3	8
136	Tetherless fiber-coupled optical sources for extended metronomic photodynamic therapy. <i>Photodiagnosis and Photodynamic Therapy</i> , 2007 , 4, 184-9	3.5	8
135	Potential applications of photodynamic therapy in regenerative medicine. <i>Journal of Craniofacial Surgery</i> , 2003 , 14, 278-83	1.2	8
134	Optical coherence and Doppler tomography for monitoring tissue changes induced by laser thermal therapyAn in vivo feasibility study. <i>Review of Scientific Instruments</i> , 2003 , 74, 437-440	1.7	8
133	Determination of the peak absorption wavelength and disaggregation kinetics of TOOKAD in vivo using dynamic, spatially resolved diffuse reflectance spectroscopy in a rabbit model 2002 ,		8
132	Treatment planning platform for photodynamic therapy: architecture, function, and validation 2002 ,		8
131	A Ratiometric Fluorescence Imaging System for Surgical Guidance. <i>Advances in Optical Technologies</i> , 2008 , 2008, 1-10		8
130	Evaluation of Novel Imaging Devices for Nanoparticle-Mediated Fluorescence-Guided Lung Tumor Therapy. <i>Annals of Thoracic Surgery</i> , 2019 , 107, 1613-1620	2.7	7
129	Sensitivity analysis aimed at blood vessels detection using interstitial optical tomography during brain needle biopsy procedures. <i>Biomedical Optics Express</i> , 2015 , 6, 4238-54	3.5	7
128	Design and modeling of a prototype fiber scanning CARS endoscope 2010 ,		7
127	The potential of biophotonic techniques in stem cell tracking and monitoring of tissue regeneration applied to cardiac stem cell therapy. <i>Journal of Biophotonics</i> , 2009 , 2, 669-81	3.1	7

126	Assessment of photobleaching during endoscopic autofluorescence imaging of the lower GI tract. <i>Lasers in Surgery and Medicine</i> , 2010 , 42, 224-31	3.6	7
125	Theoretical study of the influence of sensitizer photobleaching on depth of necrosis in photodynamic therapy 1994 , 2133, 208		7
124	Charge-coupled device and neural-network-based instrument for the noninvasive determination of tissue optical properties in vivo 1994 , 2135, 117		7
123	The Optical Absorption and Scattering Properties of Tissues in the Visible and Near-Infrared Wavelength Range 1988 , 45-52		7
122	Optical Properties of Brain Tissue 2013 , 1-22		7
121	Biodistribution and pharmacokinetic studies of a porphyrin dimer photosensitizer (Oxdime) by fluorescence imaging and spectroscopy in mice bearing xenograft tumors. <i>Photochemistry and Photobiology</i> , 2012 , 88, 1531-8	3.6	6
12 0	Activation kinetics of zipper molecular beacons. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 44-53	3.4	6
119	Estimation of minimum doses for optimized quantum dot contrast-enhanced vascular imaging in vivo. <i>Small</i> , 2012 , 8, 1780-92	11	6
118	Measurement of singlet oxygen luminescence from AML5 cells sensitized with ALA-induced PpIX in suspension during photodynamic therapy and correlation with cell viability after treatment 2002 ,		6
117	PDT-induced apoptosis: investigations using two malignant brain tumor models 2002 , 4612, 136		6
116	Recent Advances in Light-Induced Fluorescence Endoscopy (LIFE) of the Gastrointestinal Tract. <i>Digestive Endoscopy</i> , 1999 , 11, 108-118	3.7	6
115	Accuracy of interstitial measurements of absolute light fluence rate in the determination of tissue optical properties 1993 ,		6
114	First experience with spatial frequency domain imaging and red-light excitation of protoporphyrin IX fluorescence during tumor resection. <i>Biomedical Optics Express</i> , 2020 , 11, 4306-4315	3.5	6
113	A Novel Laser Fiberscope for Simultaneous Imaging and Phototherapy of Peripheral Lung Cancer. <i>Chest</i> , 2019 , 156, 571-578	5.3	5
112	Correlation of in vivo tumor response and singlet oxygen luminescence detection in mTHPC-mediated photodynamic therapy. <i>Journal of Innovative Optical Health Sciences</i> , 2015 , 08, 154000	 06²	5
111	Direct imaging of singlet oxygen luminescence generated in blood vessels during photodynamic therapy 2014 ,		5
110	Development of a widefield SERS imaging endoscope 2012 ,		5
109	Effect of tissue optics on wavelength optimization for quantum dot-based surface and subsurface fluorescence imaging. <i>Journal of Biomedical Optics</i> , 2012 , 17, 026002	3.5	5

108	Assessment of Cutaneous Photosensitivity of TOOKAD (WST09) in Preclinical Animal Models and in Patients¶. <i>Photochemistry and Photobiology</i> , 2007 , 81, 106-113	3.6	5
107	Correlation between cell viability and cumulative singlet oxygen luminescence from protoporphyrin IX in varying subcellular localizations 2007 , 6427, 48		5
106	Optical Detection of High-Grade Dysplasia in Barrett® Esophagus. <i>Techniques in Gastrointestinal Endoscopy</i> , 2005 , 7, 78-88	0.8	5
105	Fluorescence-guided resection of intracranial VX2 tumor in a preclinical model using 5-aminolevulinic acid (ALA): preliminary results 2003 ,		5
104	Ultrasound backscatter microscopy/spectroscopy and optical coherence (Doppler) tomography for mechanism-specific monitoring of photodynamic therapy in vivo and in vitro 2002 ,		5
103	An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo 1990 ,		5
102	Challenges in translation: models to promote translation. <i>Journal of Biomedical Optics</i> , 2017 , 23, 1-4	3.5	5
101	Photodynamic Diagnosis and Therapy for Peritoneal Carcinomatosis from Gastrointestinal Cancers: Status, Opportunities, and Challenges. <i>Journal of Gastric Cancer</i> , 2020 , 20, 355-375	3.2	5
100	Preclinical investigation of folate receptor-targeted nanoparticles for photodynamic therapy of malignant pleural mesothelioma. <i>International Journal of Oncology</i> , 2018 , 53, 2034-2046	4.4	5
99	Development of an In Vivo Raman Spectroscopic System for Diagnostic Applications 1997 , 28, 131		5
98	PHOTONIC AND NON-PHOTONIC BASED NANOPARTICLES IN CANCER IMAGING AND THERAPEUTICS 2006 , 121-157		5
97	Tissue Optical Properties in Relation to Light Propagation Models and in Vivo Dosimetry 1989 , 25-42		5
96	Controlling Spatial Heat and Light Distribution by Using Photothermal Enhancing Auto-Regulated Liposomes (PEARLs). <i>Angewandte Chemie</i> , 2016 , 128, 10157-10161	3.6	4
95	A feasibility study of singlet oxygen explicit dosmietry (SOED) of PDT by intercomparison with a singlet oxygen luminescence dosimetry (SOLD) system. <i>Proceedings of SPIE</i> , 2016 , 9694,	1.7	4
94	Design, synthesis and photocytotoxicity of upconversion nanoparticles: Potential applications for near-infrared photodynamic and photothermal therapy. <i>Journal of Biophotonics</i> , 2019 , 12, e201900129	3.1	4
93	In vitro and in vivo effects of photodynamic therapy on metastatic breast cancer cells pre-treated with zoledronic acid. <i>Photodiagnosis and Photodynamic Therapy</i> , 2014 , 11, 426-33	3.5	4
92	A feasibility study of photoacoustic imaging of ex vivo endoscopic mucosal resection tissues from Barrett's esophagus patients. <i>Endoscopy International Open</i> , 2017 , 5, E775-E783	3	4
91	Diffuse optical tomography to monitor the photocoagulation front during interstitial photothermal therapy: Numerical simulations and measurements in tissue-simulating phantoms. <i>Photonics & Lasers in Medicine</i> , 2014 , 3,		4

90	Polarized light based birefringence measurements for monitoring myocardial regeneration 2009,		4
89	Molecular imaging with targeted quantum dot bioconjugates: the need for contrast optimisation studies. <i>International Journal of Nanotechnology</i> , 2009 , 6, 442	1.5	4
88	Photodynamic-therapy-induced alterations of the blood-brain barrier transfer constant of a tracer molecule in normal brain 1997 ,		4
87	An accurate homogenized tissue phantom for broad spectrum autofluorescence studies: a tool for optimizing quantum dot-based contrast agents 2008 ,		4
86	A new technique for physiodesis using photodynamic therapy. <i>Clinical Orthopaedics and Related Research</i> , 2007 , 461, 153-61	2.2	4
85	Molecular Fluorescence ExcitationEmission Matrices Relevant to Tissue Spectroscopy¶. <i>Photochemistry and Photobiology</i> , 2007 , 78, 384-392	3.6	4
84	Doppler optical coherence tomography for monitoring the vascular effects of photodynamic therapy 2004 , 5316, 147		4
83	Imaging of whole tumor cut sections using a novel scanning beam confocal fluorescence MACROscope. <i>Journal of Biomedical Optics</i> , 2001 , 6, 326-31	3.5	4
82	Feasibility of using spatial frequency-domain imaging intraoperatively during tumor resection. Journal of Biomedical Optics, 2018, 24, 1-6	3.5	4
81	Fluorescence in Photodynamic Therapy Dosimetry 2003 , 529-562		4
80	Advances in Photodynamic Therapy Dosimetry*. <i>Progress in Biochemistry and Biophysics</i> , 2009 , 2009, 676-683		4
79	Characterization of pathological thyroid tissue using polarization-sensitive second harmonic generation microscopy. <i>Laboratory Investigation</i> , 2020 , 100, 1280-1287	5.9	4
78	Diffuse Optical Spectroscopy for the Quantitative Assessment of Acute Ionizing Radiation Induced Skin Toxicity Using a Mouse Model. <i>Journal of Visualized Experiments</i> , 2016 ,	1.6	4
77	Singlet Oxygen Luminescence Image in Blood Vessels During Vascular-Targeted Photodynamic Therapy. <i>Photochemistry and Photobiology</i> , 2020 , 96, 646-651	3.6	4
76	Pulsed Photothermal Radiometry Studies in Tissue Optics 1995 , 535-560		4
75	5-Aminolevulinic Acid-Induced Fluorescence in Focal Cortical Dysplasia: Report of 3 Cases. <i>Operative Neurosurgery</i> , 2019 , 16, 403-414	1.6	3
74	Early biomarker for radiation-induced wounds: day one post-irradiation assessment using hemoglobin concentration measured from diffuse optical reflectance spectroscopy. <i>Biomedical Optics Express</i> , 2017 , 8, 1682-1688	3.5	3
73	Tumor tissue characterization using polarization-sensitive second harmonic generation microscopy 2015 ,		3

72	Quantitative spectrally resolved intraoperative fluorescence imaging for neurosurgical guidance in brain tumor surgery: pre-clinical and clinical results 2014 ,		3
71	Optical glucose analogs of aminolevulinic acid for fluorescence-guided tumor resection and photodynamic therapy. <i>Molecular Imaging and Biology</i> , 2014 , 16, 495-503	3.8	3
70	IN VIVO NEAR-INFRARED FLUORESCENCE IMAGING OF HUMAN COLON ADENOCARCINOMA BY SPECIFIC IMMUNOTARGETING OF A TUMOR-ASSOCIATED MUCIN. <i>Journal of Innovative Optical Health Sciences</i> , 2009 , 02, 407-422	1.2	3
69	Preclinical studies of photodynamic therapy of intracranial tissues 1997,		3
68	Photodynamic therapy of supratentorial gliomas 1997,		3
67	Imaging of Photodynamically Generated Singlet Oxygen Luminescence In Vivo¶. <i>Photochemistry and Photobiology</i> , 2007 , 81, 941-943	3.6	3
66	In vitro studies of the efficiency of two-photon activation of photodynamic therapy agents 2006,		3
65	Vascular-targeted photodynamic of prostate cancer phase with Tookad for recurrent prostate cancer following radiation therapy: initial clinical studies 2007 ,		3
64	Quantum dots as contrast agents for endoscopy: mathematical modeling and experimental validation of the optimal excitation wavelength 2007 ,		3
63	Bioluminescence monitoring of photodynamic therapy response of rat gliosarcoma in vitro and in vivo 2003 ,		3
62	Photofrin mediated PDT in normal rat brain: assessment on apoptosis as a quantitative biological endpoint 2000 , 3909, 45		3
61	Light Dosimetry for Intraperitoneal Photodynamic Therapy in a Murine Xenograft Model of Human Epithelial Ovarian Carcinoma 1998 , 68, 281		3
60	Comparison of the In Vivo Photodynamic Threshold Dose for Photofrin, Mono- and Tetrasulfonated Aluminum Phthalocyanine Using a Rat Liver Model 1998 , 68, 394		3
59	Volumetric tumor delineation and assessment of its early response to radiotherapy with optical coherence tomography. <i>Biomedical Optics Express</i> , 2021 , 12, 2952-2967	3.5	3
58	Radiodynamic Therapy Using TAT Peptide-Targeted Verteporfin-Encapsulated PLGA Nanoparticles. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	3
57	Shape-based reconstruction for transrectal diffuse optical tomography monitoring of photothermal focal therapy of prostate cancer: simulation studies. <i>Journal of Biomedical Optics</i> , 2017 , 22, 45004	3.5	2
56	Clinical study ofex vivophotoacoustic imaging in endoscopic mucosal resection tissues 2015,		2
55	Can photoacoustic imaging quantify surface-localized J-aggregating nanoparticles?. <i>Journal of Biomedical Optics</i> , 2017 , 22, 76008	3.5	2

54	A surgical navigation system for non-contact diffuse optical tomography and intraoperative cone-beam CT 2014 ,		2
53	Development of transrectal diffuse optical tomography combined with 3D-transrectal ultrasound imaging to monitor the photocoagulation front during interstitial photothermal therapy of primary focal prostate cancer 2013 ,		2
52	Hierarchical model of fibrillar collagen distribution for polarization-resolved SHG microscopy 2013,		2
51	To begin at the beginning: the science of bio-stimulation in cells and tissues 2006 , 6140, 13		2
50	WSTO9 (TOOKAD) mediated photodynamic therapy as an alternative modality in the treatment of prostate cancer 2002 ,		2
49	Clinical studies of photodynamic therapy for malignant brain tumors: Karnofsky score and neurological score in patients with recurrent gloms treated with Photofrin PDT 2002 , 4612, 40		2
48	Noncontact point spectroscopy guided by two-channel fluorescence imaging in a hamster cheek pouch model 1999 ,		2
47	Mechanisms of the effect of Icv IL-1Ibn oxytocin release in the anesthetized, lactating rat. <i>Endocrine</i> , 1996 , 5, 51-7		2
46	Perspective on the integration of optical sensing into orthopedic surgical devices <i>Journal of Biomedical Optics</i> , 2022 , 27,	3.5	2
45	The Spectral Dependence of Fiberoptic Probe Pressure on Tissue During In Vivo Diffuse Reflectance Spectroscopy 2004 ,		2
44	Multi-Modality Optical Imaging of Vascular Responses to Photodynamic Therapy in Mouse Window Chamber Model 2008 ,		2
43	In-vitro efficacy of indocyanine green-mediated photodynamic therapy in combination with cisplatin or etoposide. <i>Photonics & Lasers in Medicine</i> , 2015 , 4,		1
42	A Monte Carlo model of detected singlet oxygen luminescence and photosensitizer fluorescence during ALA-PDT of skin 2009 ,		1
41	Lung cancer targeted Raman active phospholipid gold nanoparticles for ultrasensitive and specific molecular imaging and detection 2011 ,		1
40	Fluorescence and Raman spectroscopy. <i>Gastrointestinal Endoscopy Clinics of North America</i> , 2009 , 19, 221-31	3.3	1
39	Turbid polarimetry for tissue characterization 2009 ,		1
38	Biophotonics. Advances in Optical Technologies, 2008, 2008, 1-2		1
37	Bioluminescence Imaging of the Response of Rat Gliosarcoma to ALA-PpIX-mediated Photodynamic Therapy¶. <i>Photochemistry and Photobiology</i> , 2007 , 80, 242-249	3.6	1

36	Rational design of a receptor-targeted photodynamic molecular beacon for the multilevel control of singlet oxygen production and PDT activity in cancer cells 2007 ,		1
35	Bone surgery with femtosecond laser compared to mechanical instruments: healing studies 2006 ,		1
34	Studies of a novel photosensitizer palladium-bacteriopheophorbide (Tookad) for the treatment of prostate cancer 2003 , 4952, 104		1
33	Studies of a novel photosensitizer Pd-bacteriopheophorbide (Tookad) for the prostate cancer PDT in canine model 2003 ,		1
32	Effects of TOOKAD-PDT on canine prostates pre-treated with ionizing radiation 2003,		1
31	MACROscopic imaging of tumor xenografts using fluorescence, phase contrast, and transmitted light 2004 ,		1
30	Preclinical in vitro and in vivo studies to examine the potential use of photodynamic therapy in the treatment of osteomyelitis 2005 ,		1
29	Photodynamic therapy of supratentorial gliomas 1998 , 3247, 2		1
28	Application of laser Raman spectroscopy in concentration measurements of multiple analytes in human body fluids 1998 ,		1
27	Feasibility studies of electrical impedance spectroscopy for monitoring tissue response to photodynamic therapy 1998 , 3247, 69		1
26	Evaluation of fiber optic probes for in-vivo Raman spectroscopy 1998 , 3257, 208		1
25	Monitoring tissue response to photodynamic therapy: the potential of minimally invasive electrical impedance spectroscopy and high-frequency ultrasound 1999 ,		1
24	Determination of the photodynamic threshold for normal rabbit brain and for intracranially implanted VX2 tumors 1993 ,		1
23	Photodynamic therapy of malignant brain tumors: supplementary postoperative light delivery by implanted optical fibers: field fractionation 1991 ,		1
22	In-vivo optical attenuation in normal rat brain and its implication in PDT 1991 , 1426, 156		1
21	Thermal damage and haematoporphyrin-derivative-sensitized photochemical damage in laser irradiation of rabbit retina. <i>Lasers in Medical Science</i> , 1987 , 2, 33-40	3.1	1
20	Nanoparticle-Enabled Optical Endoscopy: Extending the Frontiers of Diagnosis and Treatment. <i>Progress in Optical Science and Photonics</i> , 2016 , 273-305	0.3	1
19	OPTICAL AND PHOTOBIOLOGICAL DOSIMETRY FOR PHOTODYNAMIC THERAPY OF SOLID TUMORS 1992 , 674-679		1

18	Characterization of Collagen in Human Pancreas, Breast and Lung with Polarization Resolved Second Harmonic Generation Microscopy 2015 ,	1
17	Intracranial Photodynamic Therapy 2013 , 207-233	
16	Introduction to Biophotonics 2013 , 1	
15	Metronomic Photodynamic Therapy as a New Paradigm for Photodynamic Therapy: Rationale and Preclinical Evaluation of Technical Feasibility for Treating malignant Brain Tumors. <i>Photochemistry and Photobiology</i> , 2007 , 80, 373-373	3.6
14	Clinical studies of photodynamic therapy for malignant brain tumors: facial nerve palsy after temporal fossa photoillumination 2003 , 4952, 97	
13	Optical Techniques for the Endoscopic Detection of Early Dysplastic Colonic Lesions509-535	
12	Determination of in vivo photosensitizer concentrations using diffuse reflectance measurements and associative learning techniques 2002 , 4613, 125	
11	Optical transillumination spectroscopy of breast tissue for cancer risk assessment 2002 , 4609, 390	
10	Clinical trials of photodynamic therapy of malignant brain tumors 2000 , 3909, 10	
9	LASERS IN MEDICINE. <i>Photochemistry and Photobiology</i> , 1991 , 53, 729-729	3.6
9	LASERS IN MEDICINE. <i>Photochemistry and Photobiology</i> , 1991 , 53, 729-729 Development of Endoscopic Devices: Past, Present and Future 2008 , 1-6	3.6
		3.6
	Development of Endoscopic Devices: Past, Present and Future 2008 , 1-6 Multispectral label-free Raman spectroscopy can detect ovarian and endometrial cancer with high	
8	Development of Endoscopic Devices: Past, Present and Future 2008 , 1-6 Multispectral label-free Raman spectroscopy can detect ovarian and endometrial cancer with high accuracy. <i>Journal of Biophotonics</i> , 2021 , e202100198	
8 7 6	Development of Endoscopic Devices: Past, Present and Future 2008, 1-6 Multispectral label-free Raman spectroscopy can detect ovarian and endometrial cancer with high accuracy. <i>Journal of Biophotonics</i> , 2021, e202100198 Photodynamic Therapy: Clinical Applications 2002, 453-462 The Optical Properties of Tissues at 633 Nanometers as Related to Light Dosimetry in	
8 7 6	Development of Endoscopic Devices: Past, Present and Future 2008, 1-6 Multispectral label-free Raman spectroscopy can detect ovarian and endometrial cancer with high accuracy. <i>Journal of Biophotonics</i> , 2021, e202100198 Photodynamic Therapy: Clinical Applications 2002, 453-462 The Optical Properties of Tissues at 633 Nanometers as Related to Light Dosimetry in Photodynamic Therpy 1988, 117-119	
8 7 6 5 4	Development of Endoscopic Devices: Past, Present and Future 2008, 1-6 Multispectral label-free Raman spectroscopy can detect ovarian and endometrial cancer with high accuracy. <i>Journal of Biophotonics</i> , 2021, e202100198 Photodynamic Therapy: Clinical Applications 2002, 453-462 The Optical Properties of Tissues at 633 Nanometers as Related to Light Dosimetry in Photodynamic Therpy 1988, 117-119 The Nature of the Light Field in Biological Media 1991, 1-18	