
Pramod K Dash

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2598856/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypothermia for Patients Requiring Evacuation of Subdural Hematoma: A Multicenter Randomized Clinical Trial. Neurocritical Care, 2022, 36, 560-572.	2.4	7
2	Impaired Experience-Dependent Refinement of Place Cells in a Rat Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, , 1-10.	2.6	0
3	Metformin Reduces Repeat Mild Concussive Injury Pathophysiology. ENeuro, 2022, 9, ENEURO.0421-21.2021.	1.9	1
4	Epigenetic Modifications and Their Potential Contribution to Traumatic Brain Injury Pathobiology and Outcome. Journal of Neurotrauma, 2022, 39, 1279-1288.	3.4	5
5	Selective Endothelial Hyperactivation of Oncogenic <scp>KRAS</scp> Induces Brain Arteriovenous Malformations in Mice. Annals of Neurology, 2021, 89, 926-941.	5.3	36
6	4R-cembranoid confers neuroprotection against LPS-induced hippocampal inflammation in mice. Journal of Neuroinflammation, 2021, 18, 95.	7.2	12
7	α7-Acetylcholine Receptor Signaling Reduces Neuroinflammation After Subarachnoid Hemorrhage in Mice. Neurotherapeutics, 2021, 18, 1891-1904.	4.4	9
8	Insulin-Like Growth Factor-2 (IGF-2) Does Not Improve Memory in the Chronic Stage of Traumatic Brain Injury in Rodents. Neurotrauma Reports, 2021, 2, 453-460.	1.4	1
9	Traumatic Brain Injury Induces Tau Aggregation and Spreading. Journal of Neurotrauma, 2020, 37, 80-92.	3.4	113
10	Mild Traumatic Brain Injury Decreases Spatial Information Content and Reduces Place Field Stability of Hippocampal CA1 Neurons. Journal of Neurotrauma, 2020, 37, 227-235.	3.4	13
11	Loss of PTEN-induced kinase 1 (Pink1) reduces hippocampal tyrosine hydroxylase and impairs learning and memory. Experimental Neurology, 2020, 323, 113081.	4.1	13
12	A method for assessing tissue respiration in anatomically defined brain regions. Scientific Reports, 2020, 10, 13179.	3.3	22
13	P-glycoprotein Expression Is Upregulated in a Pre-Clinical Model of Traumatic Brain Injury. Neurotrauma Reports, 2020, 1, 207-217.	1.4	6
14	Traumatic brain injury and hippocampal neurogenesis: Functional implications. Experimental Neurology, 2020, 331, 113372.	4.1	36
15	Sarm1 loss reduces axonal damage and improves cognitive outcome after repetitive mild closed head injury. Experimental Neurology, 2020, 327, 113207.	4.1	30
16	Endothelial Cell Dysfunction and Injury in Subarachnoid Hemorrhage. Molecular Neurobiology, 2019, 56, 1992-2006.	4.0	60
17	Carnosic Acid Improves Outcome after Repetitive Mild Traumatic Brain Injury. Journal of Neurotrauma, 2019, 36, 2147-2152.	3.4	22
18	Persistent Disruption of Brain Connectivity after Sports-Related Concussion in a Female Athlete. Journal of Neurotrauma, 2019, 36, 3164-3171.	3.4	8

Pramod K Dash

#	Article	IF	CITATIONS
19	Coordinating what we've learned about memory consolidation: Revisiting a unified theory. Neuroscience and Biobehavioral Reviews, 2019, 100, 77-84.	6.1	16
20	Endoplasmic Reticulum Stress Contributes to the Loss of Newborn Hippocampal Neurons after Traumatic Brain Injury. Journal of Neuroscience, 2018, 38, 2372-2384.	3.6	61
21	Post-Injury Administration of Galantamine Reduces Traumatic Brain Injury Pathology and Improves Outcome. Journal of Neurotrauma, 2018, 35, 362-374.	3.4	26
22	A role for autophagy in longâ€ŧerm spatial memory formation in male rodents. Journal of Neuroscience Research, 2018, 96, 416-426.	2.9	38
23	Morphology of mitochondria in spatially restricted axons revealed by cryo-electron tomography. PLoS Biology, 2018, 16, e2006169.	5.6	44
24	Increased Levels of Circulating Glial Fibrillary Acidic Protein and Collapsin Response Mediator Protein-2 Autoantibodies in the Acute Stage of Spinal Cord Injury Predict the Subsequent Development of Neuropathic Pain. Journal of Neurotrauma, 2018, 35, 2530-2539.	3.4	27
25	Altered Mitochondrial Dynamics and TBI Pathophysiology. Frontiers in Systems Neuroscience, 2016, 10, 29.	2.5	117
26	Wnt3a, a Protein Secreted by Mesenchymal Stem Cells Is Neuroprotective and Promotes Neurocognitive Recovery Following Traumatic Brain Injury. Stem Cells, 2016, 34, 1263-1272.	3.2	65
27	Traumatic brain injury decreases <scp>AMP</scp> â€activated protein kinase activity and pharmacological enhancement of its activity improves cognitive outcome. Journal of Neurochemistry, 2016, 139, 106-119.	3.9	45
28	Activation of Alpha 7 Cholinergic Nicotinic Receptors Reduce Blood–Brain Barrier Permeability following Experimental Traumatic Brain Injury. Journal of Neuroscience, 2016, 36, 2809-2818.	3.6	77
29	TIMP3 Attenuates the Loss of Neural Stem Cells, Mature Neurons and Neurocognitive Dysfunction in Traumatic Brain Injury. Stem Cells, 2015, 33, 3530-3544.	3.2	38
30	Prolonging the survival of Tsc2 conditional knockout mice by glutamine supplementation. Biochemical and Biophysical Research Communications, 2015, 457, 635-639.	2.1	12
31	Development and validation of an UPLC-MS/MS method for the quantification of ethoxzolamide in blood, brain tissue, and bioequivalent buffers: Applications to absorption, brain distribution, and pharmacokinetic studies. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2015. 986-987. 54-59.	2.3	3
32	Intrahippocampal glutamine administration inhibits mTORC1 signaling and impairs long-term memory. Learning and Memory, 2015, 22, 239-246.	1.3	1
33	Inhibition of Eukaryotic Initiation Factor 2 Alpha Phosphatase Reduces Tissue Damage and Improves Learning and Memory after Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32, 1608-1620.	3.4	40
34	Minocycline plus N-acetylcysteine synergize to modulate inflammation and prevent cognitive and memory deficits in a rat model of mild traumatic brain injury. Experimental Neurology, 2013, 249, 169-177.	4.1	85
35	Analysis of Functional Pathways Altered after Mild Traumatic Brain Injury. Journal of Neurotrauma, 2013, 30, 752-764.	3.4	57
36	Disruption of the perineuronal net in the hippocampus or medial prefrontal cortex impairs fear conditioning. Learning and Memory, 2013, 20, 267-273.	1.3	114

#	Article	IF	CITATIONS
37	Repeated Mild Closed Head Injury Impairs Short-Term Visuospatial Memory and Complex Learning. Journal of Neurotrauma, 2013, 30, 716-726.	3.4	39
38	Behavioral and Histopathological Alterations Resulting from Mild Fluid Percussion Injury. Journal of Neurotrauma, 2013, 30, 702-715.	3.4	74
39	Caffeic Acid Phenethyl Ester Protects Blood–Brain Barrier Integrity and Reduces Contusion Volume in Rodent Models of Traumatic Brain Injury. Journal of Neurotrauma, 2012, 29, 1209-1218.	3.4	44
40	The differential effects of prenatal and/or postnatal rapamycin on neurodevelopmental defects and cognition in a neuroglial mouse model of tuberous sclerosis complex. Human Molecular Genetics, 2012, 21, 3226-3236.	2.9	83
41	Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury. Science Translational Medicine, 2012, 4, 161ra150.	12.4	131
42	Biomarkers of Traumatic Injury. , 2012, , 337-355.		3
43	Human Mesenchymal Stem Cells Inhibit Vascular Permeability by Modulating Vascular Endothelial Cadherin/β-Catenin Signaling. Stem Cells and Development, 2011, 20, 89-101.	2.1	101
44	Involvement of the Glycogen Synthase Kinase-3 Signaling Pathway in TBI Pathology and Neurocognitive Outcome. PLoS ONE, 2011, 6, e24648.	2.5	79
45	Altered expression of miRNAâ€21 and its targets in the hippocampus after traumatic brain injury. Journal of Neuroscience Research, 2011, 89, 212-221.	2.9	110
46	Serum ceruloplasmin and copper are early biomarkers for traumatic brain injuryâ€associated elevated intracranial pressure. Journal of Neuroscience Research, 2010, 88, 1719-1726.	2.9	30
47	Biomarkers for the Diagnosis, Prognosis, and Evaluation of Treatment Efficacy for Traumatic Brain Injury. Neurotherapeutics, 2010, 7, 100-114.	4.4	185
48	Valproate Administered after Traumatic Brain Injury Provides Neuroprotection and Improves Cognitive Function in Rats. PLoS ONE, 2010, 5, e11383.	2.5	166
49	Elevated Albumin in Retinas of Monkeys with Experimental Glaucoma. , 2010, 51, 952.		11
50	High Blood Glucose Does Not Adversely Affect Outcome in Moderately Brain-Injured Rodents. Journal of Neurotrauma, 2010, 27, 1439-1448.	3.4	19
51	Serum IL-6: a candidate biomarker for intracranial pressure elevation following isolated traumatic brain injury. Journal of Neuroinflammation, 2010, 7, 19.	7.2	127
52	Regional Differences in Cerebral Edema After Traumatic Brain Injury Identified by Impedance Analysis. Journal of Surgical Research, 2010, 159, 557-564.	1.6	12
53	Intravenous multipotent adult progenitor cell therapy for traumatic brain injury: Preserving the blood brain barrier via an interaction with splenocytes. Experimental Neurology, 2010, 225, 341-352.	4.1	133
54	Human Traumatic Brain Injury Alters Plasma microRNA Levels. Journal of Neurotrauma, 2010, 27, 2147-2156.	3.4	260

#	Article	IF	CITATIONS
55	Intra-hippocampal administration of the VEGF receptor blocker PTK787/ZK222584 impairs long-term memory. Brain Research, 2009, 1256, 85-91.	2.2	23
56	Traumatic brain injury alters expression of hippocampal microRNAs: Potential regulators of multiple pathophysiological processes. Journal of Neuroscience Research, 2009, 87, 1435-1448.	2.9	199
57	Sulforaphane improves cognitive function administered following traumatic brain injury. Neuroscience Letters, 2009, 460, 103-107.	2.1	122
58	Identification of Serum Biomarkers in Brain-Injured Adults: Potential for Predicting Elevated Intracranial Pressure. Journal of Neurotrauma, 2008, 25, 79-93.	3.4	103
59	Molecular activity underlying working memory. Learning and Memory, 2007, 14, 554-563.	1.3	97
60	Transcription Factor Nrf2 Protects the Brain From Damage Produced by Intracerebral Hemorrhage. Stroke, 2007, 38, 3280-3286.	2.0	202
61	Enhancing Expression of Nrf2-Driven Genes Protects the Blood–Brain Barrier after Brain Injury. Journal of Neuroscience, 2007, 27, 10240-10248.	3.6	238
62	Traumatic brain injury stimulates hippocampal catechol-O-methyl transferase expression in microglia. Neuroscience Letters, 2007, 413, 36-41.	2.1	43
63	Acutely increased cyclophilin a expression after brain injury: A role in blood-brain barrier function and tissue preservation. Journal of Neuroscience Research, 2007, 85, 1980-1988.	2.9	36
64	Enhanced Catecholamine Synthesis in the Prefrontal Cortex after Traumatic Brain Injury: Implications for Prefrontal Dysfunction. Journal of Neurotrauma, 2006, 23, 1094-1102.	3.4	69
65	Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents. Neuroscience Letters, 2006, 393, 108-112.	2.1	228
66	A role for the prefrontal cortex in recall of recent and remote memories. NeuroReport, 2006, 17, 341-344.	1.2	107
67	GDNF abates serum deprivation-induced tyrosine hydroxylase Ser19 phosphorylation and activity. Brain Research, 2006, 1086, 142-151.	2.2	6
68	Inhibition of prefrontal protein synthesis following recall does not disrupt memory for trace fear conditioning. BMC Neuroscience, 2006, 7, 67.	1.9	27
69	Spatial Memory Formation and Memory-Enhancing Effect of Glucose Involves Activation of the Tuberous Sclerosis Complex-Mammalian Target of Rapamycin Pathway. Journal of Neuroscience, 2006, 26, 8048-8056.	3.6	152
70	Reversal of Brain Injury-Induced Prefrontal Glutamic Acid Decarboxylase Expression and Working Memory Deficits by D1 Receptor Antagonism. Journal of Neuroscience, 2006, 26, 4236-4246.	3.6	68
71	Sequestration of serum response factor in the hippocampus impairs long-term spatial memory. Journal of Neurochemistry, 2005, 93, 269-278.	3.9	38
72	Inhibition of hippocampal protein synthesis following recall disrupts expression of episodic-like memory in trace conditioning. Hippocampus, 2005, 15, 333-339.	1.9	38

#	Article	IF	CITATIONS
73	Sulforaphane enhances aquaporin-4 expression and decreases cerebral edema following traumatic brain injury. Journal of Neuroscience Research, 2005, 82, 499-506.	2.9	149
74	Distinct prefrontal molecular mechanisms for information storage lasting seconds versus minutes. Learning and Memory, 2005, 12, 232-238.	1.3	45
75	A role for prefrontal calcium-sensitive protein phosphatase and kinase activities in working memory. Learning and Memory, 2005, 12, 103-110.	1.3	59
76	Blockade of Î ³ -secretase activity within the hippocampus enhances long-term memory. Biochemical and Biophysical Research Communications, 2005, 338, 777-782.	2.1	27
77	Genetic networks controlling retinal injury. Molecular Vision, 2005, 11, 958-70.	1.1	16
78	A Role for Prefrontal Cortex in Memory Storage for Trace Fear Conditioning. Journal of Neuroscience, 2004, 24, 1288-1295.	3.6	191
79	Enhancement of Tyrosine Hydroxylase Phosphorylation and Activity by Glial Cell Line-derived Neurotrophic Factor. Journal of Biological Chemistry, 2004, 279, 2182-2191.	3.4	41
80	A Cell-Permeable Phospholipase CÂ1-Binding Peptide Transduces Neurons and Impairs Long-Term Spatial Memory. Learning and Memory, 2004, 11, 239-243.	1.3	20
81	Nonredundant roles for hippocampal and entorhinal cortical plasticity in spatial memory storage. Pharmacology Biochemistry and Behavior, 2004, 79, 143-153.	2.9	10
82	A Molecular Description of Brain Trauma Pathophysiology Using Microarray Technology: An Overview. Neurochemical Research, 2004, 29, 1275-1286.	3.3	38
83	Post-Trauma Administration of Caffeine Plus Ethanol Reduces Contusion Volume and Improves Working Memory in Rats. Journal of Neurotrauma, 2004, 21, 1573-1583.	3.4	44
84	A unified theory for systems and cellular memory consolidation. Brain Research Reviews, 2004, 45, 30-37.	9.0	57
85	A role for hippocampal Rho–ROCK pathway in long-term spatial memory. Biochemical and Biophysical Research Communications, 2004, 322, 893-898.	2.1	67
86	Intra-medial prefrontal administration of SCH-23390 attenuates ERK phosphorylation and long-term memory for trace fear conditioning in rats. Neurobiology of Learning and Memory, 2004, 82, 65-70.	1.9	79
87	Expression of the Prodynorphin Gene after Experimental Brain Injury and Its Role in Behavioral Dysfunction. Experimental Biology and Medicine, 2003, 228, 261-269.	2.4	24
88	Extracellular Signal-Regulated Kinase Activity in the Entorhinal Cortex Is Necessary for Long-Term Spatial Memory. Learning and Memory, 2002, 9, 156-166.	1.3	73
89	Intrahippocampal Wortmannin Infusion Enhances Long-Term Spatial and Contextual Memories. Learning and Memory, 2002, 9, 167-177.	1.3	17
90	Altered expression of novel genes in the cerebral cortex following experimental brain injury. Molecular Brain Research, 2002, 104, 148-158.	2.3	118

#	Article	IF	CITATIONS
91	Highâ€density microarray analysis of hippocampal gene expression following experimental brain injury. Journal of Neuroscience Research, 2002, 67, 646-663.	2.9	165
92	Caspase activity plays an essential role in long-term memory. NeuroReport, 2000, 11, 2811-2816.	1.2	66
93	Regional Expression and Role of Cyclooxygenase-2 Following Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2000, 17, 69-81.	3.4	117
94	A Mitogen-Activated Protein Kinase Cascade in the CA1/CA2 Subfield of the Dorsal Hippocampus Is Essential for Long-Term Spatial Memory. Journal of Neuroscience, 1999, 19, 3535-3544.	3.6	505
95	Deferoxamine improves spatial memory performance following experimental brain injury in rats. Brain Research, 1996, 717, 109-117.	2.2	76
96	Delayed, selective neuronal death following experimental cortical impact injury in rats: possible role in memory deficits. Brain Research, 1996, 739, 111-119.	2.2	185
97	Apoptotic morphology of dentate gyrus granule cells following experimental cortical impact injury in rats: possible role in spatial memory deficits. Brain Research, 1996, 739, 120-131.	2.2	200
98	Biochemical characterization of Escherichia coli DNA helicase I. Molecular Microbiology, 1992, 6, 1163-1172.	2.5	27
99	Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature, 1990, 345, 718-721.	27.8	698